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ABSTRACT

An important means of controlling recurrent infectious diseases is

through active screening to detect and treat patients. Disease de-

tection on a large network of individuals is a challenging problem,

as the health states of individuals are uncertain and the scale of the

problem renders traditional dynamic optimization models imprac-

tical. Moreover, efficient use of diagnostic and labor resources is a

major concern, especially when the recurrent disease is prevalent

in a resource-constrained region. In this paper, we propose a novel

active screening model and an algorithm to facilitate active screen-

ing for recurrent diseases. Our contributions include: (1) A new

approach for modeling SEIS type diseases using a novel belief-state

representation, (2) a community and eigenvalue-based algorithm

(TRACE) to perform multi-round active screening. We perform ex-

tensive experiments on real-world datasets which emulate human

contact, and illustrate significant benefits due to TRACE.
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1 INTRODUCTION

Curable infectious diseases are responsible for millions of deaths

every year. Tuberculosis (TB), one such disease, affected over 10

million people worldwide in 2016, and caused over 400,000 deaths

in India, the country with the highest TB mortality [28]. While low-

cost treatment programs are available, many rely on patients to seek

medical care (passive screening). However, individuals mistake their

symptoms for another condition and not seek care. Public health

agencies therefore engage in active screening, where individuals

in the community are asked to undergo diagnostic tests and are

offered treatment if tests return positive results [16].

It is costly to seek out at-risk individuals, and active screening

efforts are often limited to high risk groups such as household TB

contacts [9]. This method can successfully identify patients [3], and

has been extensively evaluated [17]. However, this approach can be

challenging to implement widely in resource-constrained regions

such as India, as there are large transmission networks of potential

patients and the number of health workers is limited. Prior studies

show that even when focusing on high-risk TB groups in urban

slums in India, the yield can be very small — only 0.8% of screened

individuals were diagnosed with TB [9].With an estimated 1million

undiagnosed TB cases in India, efficient active screening is the need

of the hour [9].

Our first contribution is a model of the active screening problem

which considers the underlying disease dynamics. We focus on

recurrent infectious diseases with a latent stage (SEIS model of

disease [26]), such as TB. Individuals can be susceptible (S) (cur-

rently healthy, but may become exposed), exposed (E), or infected

(I). We consider diseases for which there is no means to achieve

permanent immunity, either through vaccination or one time infec-

tion. As for TB, we assume treatment is effective for both exposed

and infected individuals, making the individuals healthy (though

again susceptible). Health workers are uncertain about the health

state of individuals and have a small budget relative to population

size for active screening. To the best of our knowledge, models of

multi-round active screening for SEIS diseases are missing in the

AI literature.

Our second contribution is a novel algorithm—TargetedResolution

of Active diseases using Communities and Eigenvalues (TRACE)—

to guide scalable active screening. In TRACE, we use network

community structure to form a community graph, and then we

select nodes to screen by maximizing the reduction of the largest

eigenvalue of a variant of the community graph. TRACE takes into

account the underlying disease dynamics and uncertainty of indi-

viduals’ health states. TRACE is easily adaptable to most SEIS or

SIS type diseases.

We illustrate the benefits of TRACE via extensive testing on real-

world human contact networks against various baselines across

a wide range of disease parameters (which also demonstrates its

applicability to various other diseases).

2 DISEASE MODEL AND BACKGROUND

We first introduce the disease model notations for our problem. An

individual can be in one of the following health states: S means that

the individual is susceptible to disease (healthy), E means that the

individual has been exposed and has latent disease, and I means that

the individual is infected. We do not consider an explicit recovered

or permanent immunity (R) state in our model, as this have been

the focus of many prior studies. In diseases like Hepatitis A and

measles, which follow a SEIR or SIR pattern, treated individuals may

achieve permanent immunity by entering the recovered state [5, 24].

We focus on recurrent diseases, where permanent immunity is not

possible (such as with TB, typhoid, and malaria), represented by

SIS [1] or the more general SEIS [26] disease dynamics.

Disease Model: We adopt a SEIS model [26] for modeling the

disease dynamics. TB andmany other diseases follow a SEIS pattern,

where treated individuals can relapse or become reinfected. The

disease dynamics are therefore given by:
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Susceptible (S)
α−→ Exposed (E)

Exposed (E)
β
−→ Infected (I )

Infected (I )
c−→ Susceptible (S)

In the context of a graph of individuals, α is the edge-wise fixed

probability of a susceptible (S) individual (node) being exposed (E)
to the disease from an infected (I ) neighbor, β is the fixed probability

of an exposed (E) individual (node) becoming infected (I ), and c
is the probability of an infected (I ) individual (node) voluntarily
seeking and successfully completing treatment and returning to

the susceptible S stage. We assume that the treatment takes place

in one time period, where a period represents the duration needed

for a complete treatment regimen (∼half a year for TB).
Prior Approaches for Active Screening: Most previous work

on active screening deals primarily with SIR or SEIR type diseases,

often referred to as the Vaccination Problem [5, 24, 27, 30? ], where

permanent immunization (entry into R state) can be viewed as re-

moving nodes from the graph [2, 20, 25]. Exploiting this idea, [20,

25] focus on immunization ahead of an epidemic and suggest a

heuristic method of removing a set of k nodes based on the eigenval-

ues of the adjacency matrix. [30] considers the problem of selecting

the best k nodes to immunize in a network after the disease has

started to spread. These methods assume that the exact status of

each node is known and deal with a single round of vaccination

or screening. However, our paper focuses on multi-round active

screening of SEIS diseases, where the complexity increases sub-

stantially due to lack of permanent immunity, existence of a latent

stage, and uncertainty about the health states of all individuals.

To the best of our knowledge, this complex setting has not been

attempted previously in the AI literature. Generally, the problem of

minimizing disease spread is different from the well-studied prob-

lem of influence maximization [? ? ] as well, where one optimizes

the selection of seeds or starting nodes for maximizing spread, as

opposed to optimizing the selection of nodes on which to intervene

in order to minimize spread.

3 ACTIVE SCREENING MODEL

FORMULATION

Setup.We define k active screening agents that are to be deployed

at every timestep t to diagnose and treat I and E individuals. Indi-

viduals are part of a contact networkG(V ,E), and infection spreads

via the edges in the network. There are |V | individuals, and N (i)
denotes neighbors of individual i in the network. The network

structure (graph) is known from the beginning (t = 0). Each indi-

vidual (node) in the network is in one of the health states {S,E, I }.
Let sti denote the state of individual i at time t . In every round, the

agents can either choose to screen a node i (action ai = 1) or not

(ai = 0). Only k nodes can be screened in one round. A screened

node is observed to be in state S , E, or I , and an unscreened node

generates no observation. The agents maintain a belief about the

state of every individual, starting with no information at t = 0. The

beliefs about the health states evolve over time as the agents gain

information about individuals (detailed later in this section).

Transition Dynamics. The probability of an individual under-

going a change in health state is given by:

T 0 =

S E I[ ]
S qj 1 − qj 0

E 0 1 − β β
I c 0 1 − c

,

T 1 =

S E I[ ]
S qj 1 − qj 0

E 1 0 0

I 1 0 0

,

and qj = (1 − α) | {k ∈N (j) | s
t
k=I } |

where, T 0
is the probability matrix for non-screened individuals

and T 1
is the probability matrix for screened individuals. The rows

denote the state at time t and the columns denote the state at t + 1.

The transition probabilities follow the disease dynamics described

earlier. In particular, qj captures the probability that node j does not
become exposed from his infected neighbors {k ∈ N (j) | stk = I }.
Both I and E individuals who are screened can be treated, but we

assume E individuals do not seek treatment voluntarily since their

disease is latent unlike I individuals who seek treatment voluntarily

with the probability c . For model simplicity, we assume S individuals
cannot directly transition directly to I state. This is not an extreme

assumption for TB, where the overall duration with latent TB can

be much longer than the round length (6 months).

Objective. Finally, we define a reward function R(st ) = ∑
j R(stj ),

where R(stj ) is defined as follows.

R(stj ) =
{
+1, stj = S

0, otherwise

The objective of themodel is to choose the budget-limited actions

at each time step in order to maximize the number of susceptible

individuals over T time-steps: max

∑T
t=0

R(st ), interpreted as the

total number of disease-free half years [12]. This is closely related

to another well known public health metric — QALY [? ? ], where

additionally a +1 reward is given to E individuals and a +0.66

reward to I individuals. We focus on maximizing health outcomes

in this study and leave cost considerations to future work. An

important part of the model is our belief updating approach, which

is described next.

Belief States. We do not know the true health states of every

individual at all times perfectly. We therefore model our belief

of node i’s health state as bti = [bti,S ,b
t
i,E ,b

t
i, I ], where b

t
i, j is the

probability node i is in state j. This marginal representation of

health state belief for each node i addresses scalability issues, as

representations of the joint distribution of health state beliefs over

all nodes can be prohibitively large. We assume marginal beliefs

bti ’s can be updated independently at each node. Such independence
assumptions have been made in prior literature on the spread of

contagion [8, 18] and experimentally found to have a minimal effect

on outcomes.

Belief Update. We assume perfect observability of the health

state sti of any node when it is screened. We cannot observe the

health state of a node at time t if we do not screen it at time t .
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We update the belief for each individual (node) i who voluntarily

come to the clinic to an intermediate belief state
¯bti = [0, 0, 1].

We also update the beliefs of actively screened individuals to an

intermediate belief state
¯bti ∼ s

t
i . We update the intermediate beliefs

of the remaining individuals as:

¯bti =
[bti,S ,b

t
i,E , (1 − c)b

t
i, I ]

bti,S + b
t
i,E + (1 − c)b

t
i, I

For each node i that voluntarily came to a clinic or was actively

screened, the final belief update is: bt+1

i = [1, 0, 0] because the node
will be successfully treated and returned to the susceptible state if

it was in E or I state. For the remaining nodes, we update to bt+1

i
as follows:

bt+1

i = ¯bti Γt, where

Γt =


wt
i 1 −wt

i 0

0 1 − β β
c 0 1 − c

 , wt
i =

∏
j ∈N (i)

(1 − α ¯btj, I ).

This belief update procedure is an important and novel aspect

of our proposed active screening model.

While the our model can be interpreted as a POMDP, it is slightly

different from standard POMDP models, since in the active screen-

ing setting a screening action results in observing the current health

states of the individual and not the individual’s transitioned state.

This difference can be handled straightforwardly, as in [4, 19] us-

ing a modified value iteration technique. However, we show in

Section 6 that known POMDP approaches are not scalable for our

problem.

4 MOTIVATION FOR TRACE

Given the problem setup, we motivate the need for the TRACE algo-

rithm by showing that many prior approaches or simple extensions

do not achieve the desired goal.

4.1 Eigenvalue Based Prior Approach

We first consider the circumstances under which diseases or epi-

demics die out on their own. In the absence of any intervention

(action), the system is a discrete non-linear dynamical system. Such

systems have been studied in prior work, and the following has

been shown:

Proposition 1. [18] Let λ∗A denote the largest eigenvalue of the

adjacency matrix A of the underlying graph, otherwise known as the

spectral radius. Then, the epidemic dies out if and only if

α

c
<

1

λ∗A
and β , 0 .

Remark: An observation is that the bound on λ∗A above is same as

derived for SIS model (without exposed E state) in earlier work [8].

This is because in the SEIS model, the E state must eventually

become I if β , 0; thus, in the long run, E behaves similarly to I
when β , 0 and there is no active intervention.

Permanent immunization can be viewed as removing nodes.

Given the result above, one would wish to select the set of k nodes

that reduces the largest eigenvalue the most. This is a NP-complete

problem. [20, 25] suggest a heuristic that greedily removes k nodes

one at a time, each time selecting the node that maximizes the

reduction in the largest eigenvalue.

We also observe that the underlying problem is extremely hard

to solve. In SIS networks, computing an individual’s probability

of infection and computing the expected number of infections are

NP-hard [13, 21]. SIS is the relaxed version of the SEIS model, where

β = 1. It is also known from [27] that given a network and limited

resources, finding the optimal strategy for vaccinating a limited

number of individuals (vaccination problem - SIR scenario), and

quarantining a limited number of individuals (quarantining prob-

lem) are NP-hard. Also, given a network and limited resources,

finding the optimal strategy for placement of a limited number of

sensors for monitoring the course of an epidemic is NP-hard [21].

The Active Screening problem as defined in Section 3 is a gen-

eralized (harder) case of the above problems where we try to treat

infected people without removing them from the graph since there

is no permanent immunity and re-infection is possible (SEIS sce-

nario). Based on Prop. 1, we also observe that a disease is unlikely to

die out on its own in low-resource countries (c is low) with highly

contagious diseases (high α ), thus necessitating active screening.

4.2 Budgetary Threshold for Random

Intervention

We can gain insight into how uncertainty in individuals’ health

states affects our problem by examining the fully-naive random

screening strategy. We focus on the budget k , the number of nodes

that can be screened and treated in one period. Intuitively, increas-

ingk will lead to faster reduction of disease prevalence with random

screening.

Lemma 1. Assume that we know the infected patients belong to

a set It in every round t such that |It | ≤ m, wherem is an arbitrary

constant corresponding to the size of the network. Then, the epidemic

dies out using k random interventions every round if k > m(λ∗Aα −c).

Proof. The k random interventions among It nodes increase c
by at least k/m and α is unchanged. Thus, the disease will die out

if
α

c+k/m < 1/λ∗A. □

Besides providing a threshold for k for which a naive inter-

vention can achieve disease eradication, the above result can be

understood as the price of limited information. Lower values ofm,

meaning more information (better estimate of the true health state),

requires fewer random interventions to eradicate the disease. This

underscores how uncertainty in the health states is an additional

challenge when the number of interventions are limited.

4.3 Eigenvalue and Max Belief

Given the importance of information revealed above, a simple alter-

native to the eigenvalue approach could be to select k nodes with

the top belief of being infected bti, I at every time step (denoted fur-

ther asMax Belief ). Unfortunately, both the eigenvalue method and

Max Belief method have shortcomings in our dynamic problem. We

demonstrate this through some observations for different classes

of networks. In all the observations, (α , β , c) = (1, 1, 0). Also, for
the sake of comparison, we assume all beliefs are close to the true

states.

Observation 1. There exists a class of graphs where the Max

Belief method with a budget of k ∼ O(1) requires an expected O(n!)
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rounds to completely eradicate the disease whereas an eigenvalue-

based method can eradicate the disease in an expected O(n2) rounds
just with a budget of k = 2.

Justification. Consider a star graph (Figure 1a), where all the

nodes are initially in I state. With a budget of 2, the eigenvalue

method will choose the star center and one arbitrary node among

non-central nodes to treat in every round. The disease will thus die

out in an expected

∑n−1

i=1

n−1

i ∼ O(n2) rounds. On the other hand,

the Max Belief method will choose k nodes randomly among the

nodes in state I . If the center node is not picked in every two rounds

(S
1 round−−−−−−→ E

1 round−−−−−−→ I ) before the disease dies out, the center will
become infected, and after two more rounds the non-central nodes

will be I except 2k nodes which can be either in S , E or I state (we
ignore this w.l.o.g.). The probability of the center node being chosen

every second round (because it takes two rounds to move from S

to I state) is k
|I | where |I | is the total number of infected nodes in

the round with the center being in I state. The probability of the

center node being chosen every second round until the disease dies

out is

∏ n
2k−1
−1

i=0

k
n−(2k−1)i . This gives the desired result.

I

I

I

I

I

...
...

· · ·

· · ·

(a)

S

S S

· · · · · · · · · · · ·

S I SS· · ·

(b)

Figure 1: Comparing Eigenvalue and Max Belief

Observation 2. There exists a class of graphs where an eigenvalue-

based method can never eradicate the disease with a budget of k < n
2

whereas the Max Belief method can eradicate the disease in one round

with a budget of k ∼ O(1).

Justification. Consider a binary tree (Figure 1b), with Θ(k)
leaf nodes in I state and others in S state. An eigenvalue-based

method chooses the nodes that equally partitions the graph, and

thus in this case it will start choosing from the root and go down

the tree in breadth-first order, and reach the leaf nodes only after

it has chosen all the
n−1

2
parent nodes. Max Belief however can

eradicate the disease in the first round by simply choosing k nodes

which have the highest probability of being in I state, which are

the infected leafs.

4.4 Community Based Approach

Infectious diseases such as TB are transmitted via close contact

with an infected person, usually within communities [10]. Curing

whole communities may potentially be an efficient way to reduce

infection (can be interpreted as graph shattering [27]), since infec-

tion propagation is stopped for large sections of the graph. Also

in our case, given the lack of additional information about the net-

work like patient attributes, it is natural to utilize this approach.

We also note that forming communities might enable us to reduce

the largest eigenvalue, i.e. apply Algorithm ??, in a scalable fashion.

However, we show in the following Observations that using

communities alone can be both better or worse than Greedy or

eigenvalue based approaches for different classes of graphs, further

motivating the need for our algorithm, TRACE, which identifies

communities in addition to considering beliefs and reducing the

largest eigenvalue. The exact method of achieving scalability using

communities is elucidated in the next section.

(a)

I

S

S

S

S

...
...

· · ·

· · ·

I

S

S

S

S

...
...

· · ·

· · ·

(b)

Figure 2: Comparing Eigenvalue, Community and Greedy

Observation 3. There exists a class of graphs where an eigenvalue-

based method can never eradicate the disease with a budget of k and

the Greedy method requires an expectedO(|V |k ) rounds to completely

eradicate the disease, but a community-based method can eradicate

the disease in an expected O(|V |2) rounds.

Justification. Let us consider a graph where there exists M
disjoint clusters (Figure 2a), each of size less than or equal to the

budget k with k << M , whereM is the number of communities. All

the nodes are in I state and are arranged in each cluster such that

the the top k nodes, removal of which causes the most decrease in

the largest eigenvalue, all lie in different clusters. In such graphs,

it is evident that community-based algorithms can cure one com-

munity at a time and can achieve full eradication after an expected

M2 ∼ (|V |/k)2 ∼ O(|V |2) rounds because a cured community can-

not infect other communities. However, an eigenvalue-based tech-

nique may not choose communities as a whole and therefore, an

eradication cannot be guaranteed unless the budget is increased to

|V | which is equal to the size of the graph. Similarly, the Greedy

methodmay not choose communities as a whole and therefore takes

an expected

( |V |−1

k−1

)
rounds to cure the first community,

( |V |−k−1

k−1

)
rounds to cure the second community, and so on, thus taking ap-

proximately O(|V |k ) rounds to cure all the infected nodes.

Observation 4. There exists a class of graphs where a community-

based method can never eradicate the disease whereas the Greedy

or eigenvalue-based method either can eradicate the disease in one

round with a budget of k .

Justification. ConsiderM disconnected star graphs (Figure 2b),

where M − 1 stars are of size less than k and one star is of size k ,
and k ≤ M . All the center nodes of the stars are in I state, and
all the other nodes are in S state. With a budget of k , community-

based algorithms will keep choosing the same star with k nodes

thus never eradicating the disease. However, either the Greedy or

eigenvalue-based method can directly choose the k center nodes in

the first round and completely eradicate the disease in one shot.
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5 TRACE ALGORITHM FOR ACTIVE

SCREENING

We introduce a structured algorithm to generate an online POMDP

policy—Targeted Resolution of Active diseases using Communities

and Eigenvalues (TRACE)—that combines elements of the three

approaches (Max Belief, and eigenvalue based, and community

based methods) to identify the k individuals to actively screen

at every time-step. The complete TRACE algorithm is shown in

Algorithm 1. There are two distinct parts to this algorithm.

5.1 Community Formation and Intervention

As we do not know the true health state of all nodes in the net-

work, we form communities using beliefs. The two step process is

described below and is a part of Algorithm 1.

Node Type Estimation: We assign an attractiveness score to

reflect the effectiveness of intervening on the node. If we knew the

true health state of every node, then we would intervene only on

the infected nodes as only these nodes spread infection. However,

in the absence of such precise information, at every time-step the

nodes are sorted according to a measure of possible benefit, defined

as Rti = σbti,E +b
t
i, I for each node i (line 2), where σ is an arbitrary

parameter that controls the relative importance of E nodes relative

to I nodes. The nodes with the highest one-third of Rt values are
labeled д1 (group 1), the next one-third to be д2 (group 2), and the

rest to be д3 (group 3) (line 3).

Super-Node Creation: After labeling all nodes, locally similar

nodes (nodes of the same label that share an edge) are clustered

into a super-node iteratively. This process generates a set of super-

nodes, each of which is labeled as д1, д2 or д3 based on the labeling

of its component nodes. There can be multiple super-nodes with

the same label in the network. The sizeu of a super-node u is the

number of component nodes in the super-node. The weights of

edges between nodes in different super-nodes are added to produce

new inter-super-node edges. This super-nodes formation uses the

known method of graph coarsening [11] (line 4). As an example, in

Figure 3 we combine the two д1, two д2 and three д3 nodes to form

three super nodes with size two (and another with size one). These

super-nodes emulate the communities of I , E and S in real-world

networks. We refer to the resultant graph of super-nodes as the

community graph, where the belief of each node btu,S is the average

of btv,S of all component nodes v in super-node u.

g1

g3

g2

g2

g1

g3

g3

1

1

11

1

1

1

1

1
g1 [2]

g3 [2]

g3 [1]
g2 [2]

3

1

1

1

Figure 3: 4 super-nodes formed from 7 nodes

Next, we call the DynamicEigen sub-procedure to choose nodes

to screen in the weighted community graph using size as weights

on each super-node (line 5, where A is the adjacency matrix of

the community graph). The procedure returns a set of super-nodes

Algorithm 1 TRACE Algorithm

Input: Adjacency Matrix A of graph, Belief bt , Budget k
1: for all i ∈ {1, . . . ,n} do
2: Rti = σbti,E + b

t
i, I

3: Sort Rt and label each node as д1,д2, or д3

4: A, b
t
, size ← Coarsen(A,д1,д2,д3,b

t )
5: U← DynamicEigen(A, b

t
, size,k)

6: if

∑
u∈U sizeu > k then

7: u′ ← the last selected super-node from U
8: κ = k −∑u∈U\u′ sizeu
9: A,bt ← remove all nodes in U\u′ from A,bt

10: a ← DynamicEigen(A,bt , 1,κ)
11: Active screen nodes {v | v ∈ a or v ∈ u for u ∈ U\u′}

where the total size (weight) is not lower than the budget k . If
the total size is higher (line 6), we remove a super-node (line 7),

compute left-over budget κ (line 8), modify the original graph by

removing all nodes from the left-over super-nodes (line 9), and

call the sub-procedure again to select κ nodes from the modified

original graph with weights 1 on each node (line 10). It must be

noted that our proposed DynamicEigen procedure is also one of

the novel aspects of TRACE.

5.2 DynamicEigen Procedure

Next, we describe the DynamicEigen procedure, which is shown

in Algorithm 2. Prior methods to minimize the largest eigenvalue

greedily chose nodes to delete in order to generate a graph with

lower maximal eigenvalue. Since we do not know which nodes are

infected and can transmit infection with certainty, we augment this

method by incorporating uncertainty. To motivate our approach,

consider a hypothetical scenario where the state of each node is

known for sure. We only wish to intervene on infected and exposed

nodes, and S nodes do not effect neighboring nodes.

Using Ai, j = Aj,i = 1 to represent an edge from i to j in the

adjacency matrix A of the input graph, we see that removing all

edges from S nodes is same as multiplying the rows and columns of

A corresponding to nodes in state S by zero. Then we can greedily

choose among I and E nodes with the goal of reducing the largest

eigenvalue of the adjacency matrix of the directed graph and return

nodes that have total weights above the threshold k . While our

intervention may be undone over time (treated nodes can be rein-

fected), repeated screenings may push the system towards lower

disease prevalence.

Let us return to our problem setup, where we do not know the

exact state of each node but rather have beliefs about each node. A

natural extension of the hypothetical scenario above is to multiply

the row of a node i in the adjacency matrix A by 1 − bti,S , the belief
probability it is E or I (line 3). Algorithm 2 describes this approach.

This is a softer version of making the row of all S nodes all zeros.

Then, we perform greedy selection of nodes (lines 4-9) to reduce

the largest eigenvalue of this matrix and to return nodes that have

total weights above the threshold k .
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Algorithm 2 DynamicEigen(A,bt ,w,k)

Input: Adjacency matrix A, belief b, functionw for weight of each

node, min total weight of nodes to remove k
1: V ← Number of vertex of input graph

2: for all i ∈ {1, . . . ,V } do
3: Ai, : = Ai, : ∗ (1 − bi,S ) ▷ Multiply ith row

4: for all i ∈ {1, . . . ,V } do
5: A′ ← A
6: A′i, : ← 0 , A′

:,i ← 0 ▷ Remove ith node

7: λi = LarдestEiдenvalue(A′)
8: Sort nodes ⟨v1, . . . ,vV ⟩ corresponding to increasing λi

9: return first h nodes such that

∑h
i=1

w(vi ) ≥ k

Now that we have combined community structure with belief

states (denoted Comm in Section 6), we compare it to the Dynami-

cEigen procedure (without super-node formation).

(a)

I

S

S

S

S

...
...

· · ·

· · ·

I

I

I I· · ·

(b)

Figure 4: Comparing DynamicEigen and Comm
approaches

Observation 5. There exists a class of graphs where Dynami-

cEigen without super-nodes can never completely eradicate the dis-

ease with a budget of k whereas the Comm algorithm can eradicate

the disease in an expected O(n) rounds.

Justification. Consider a graph withM disjoint clusters (Fig-

ure 4a), each of size less than or equal to the budget k andM > k .
All the nodes in allM communities are in I state. In such graphs, the
Comm algorithm can treat one community at a time and achieve

full eradication after M ∼ n/k ∼ O(n) rounds as a community

of S nodes cannot infect other communities. However, the Dy-

namicEigen algorithm may not choose communities as a whole,

therefore eradication cannot be guaranteed unless the budget is

increased to n, which is equal to the size of the graph.

Observation 6. There exists a class of graphs where the Comm

algorithm with a budget of k requires an expectedO((n−n′)!) rounds,
to completely eradicate the disease whereas DynamicEigen without

super-nodes can eradicate the disease in an expected O(n′) rounds
with a budget of k , where n′ is the size of the smaller star.

Justification. Consider a graphwith two stars of different sizes

(Figure 4b) where the smaller star is of size n′ ≥ k and the larger

star has a size of n − n′. Initially, the center node in the larger star

is in state I and the other nodes are in state S . All the nodes in

the smaller star are in state I . The dynamic eigenvalue algorithm

can eradicate the disease with just a budget of k in an expected

O(n′) rounds by choosing both the stars’ center and then choosing

one non-central node and the center, or two non-central nodes in

each round based on if the center node is in I state. However, the
Comm algorithm will cluster the smaller star and cure all of them

before choosing the I node in the larger star, where by then all of

the nodes in the larger star would have been infected. Based on an

analysis similar to Observation 1, we can conclude that the disease

will die out in an expected O((n − n′)!) rounds.

Observation 7. Suppose the belief states equal the actual health

states and (α , β, c) = (1, 1, 0). Then, TRACE is guaranteed to perform

better than or at least as well as its individual components, in terms

of both budget and time, in all the classes of graphs discussed in the

Observations.

Proof. For example, in Figure 1a, in case of exact beliefs, it is

guaranteed that TRACE will choose the central node since that

is the best choice by eigenvalue (all I nodes have equal belief of
[0,0,1]) and thereby eradicate the disease in O(|V |2) rounds with a

budget of k = 2. Similarly, in Figure 1b, TRACE is guaranteed to

choose all the k infected nodes since all the other nodes have zero

belief of being in I state, thus eradicating the disease in one round.

Thus, following Algorithm 1, we can similarly show that TRACE

will in fact perform at least as well as its individual components

in all the discussed classes of graphs (variants of trees, stars, and

clusters). We omit the details for brevity. □

Thus, TRACE is able to leverage the advantages of each approach.

Although these special graphs do not by themselves represent real-

world human contact graphs, real graphs are formed from a com-

bination of these special graphs. Estimating that the belief space

representation is a reasonably accurate embedding of the informa-

tion we do have (there is no misinformation in observations while

screening), we hypothesize that TRACE’s superior performance

in these skeleton graphs can be extended to interpret good perfor-

mance in realistic graphs as well. This hypothesis is validated via

experiments.

6 EXPERIMENTS

We consider three real-world datasets on which we perform experi-

ments.

(1) India network [6]: A human contact network with n = 202

nodes, collected from a rural village in India, a setting in

which TB active screening may take place (1/λ∗A ∼ 0.095).

(2) Infectious Exhibition network [14]: A real-world human

contact network with n = 410 nodes, collected during an

artificial simulation of contagion and containment at an

exhibition (1/λ∗A ∼ 0.043).

(3) Irvine network [15]: An online social network with n =
1899 nodes, constructed from sent messages between the

users of an online community of students from UC Irvine

(1/λ∗A ∼ 0.021).

As discussed in Section 3, we first attempt to solve our special

POMDP using the state-of-the-art modified POMCP algorithm [19].

We show in Figure 5 that POMCP takes exponential time with

increasing n and fails to scale up beyond 10 nodes (India network)

for fixed values of k and T while TRACE is able to generate an

online POMDP policy for the whole network without exponential

increase in runtime. Factored POMDPs [29] and newer algorithms
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like DESPOT [22] also fail to scale up beyond a few nodes due to

memory overflow. All results are averages over 20 simulation runs.

3 4 5 6 7 8 9 10
0

250

500

750
POMDP

TRACE

Figure 5: Runtime (s) v/s Number of nodes (n); k = 3,T = 10

Settings. Next, we analyze TRACE’s performance under various

α , β , c settings. α , β, c may depend on social contact patterns and

biological factors which may vary across populations [23]. We

explore a range of these parameters to show disease behavior under

a variety of scenarios. Since eradication does not depend on β
(by Proposition 1), we vary only α , c and fix β = 0.25 for the

experiments. The passive treatment rate c may vary widely, as

it depends on resource availability (clinic accessibility, outreach

campaigns, etc.). In all simulations, the budget is k = 5% of the total

population, and σ = 0.5.

Setup. In the real world, active screening is performed only after

conducting initial surveys on the prevalence and incidence of the

disease. To simulate this, we run our experiments in two stages.

(1) Stage 1 (Survey Stage), starts at t = 0 with equal number

of S,E, I individuals and ends at t = 10. No active screening

is done and the disease evolves naturally. The initial belief

b0
for all nodes is assumed to be [ 1

3
, 1

3
, 1

3
] since we have

no prior information. Beliefs are updated when individuals

come to the clinic voluntarily (with probability c).
(2) Stage 2 (Active Screening Stage), we consider various

screening algorithms. We perform active screening from

t = 11 to t = 30 to represent 10 years of time (each round

is 6 months [7]). We compare the benefit of these screening

strategies over and above no intervention (None), where in

None the evolution of the health states is based on disease

dynamics with no active screening.

Comparison with baselines. Given the lack of previous algo-

rithms, Figures 6 and 7 show the performance of TRACE against

simple baselines:

(1a) Random: Randomly select nodes for active screening.

(1b) Static Eigen (SE): Choose the nodes using Algorithm 2 after

removing lines 2 & 3 (no belief information), on the network

(no super-node formation). This baseline uses only the graph

structure information.

TRACE provides significant improvement over None compared

to SE and Random (p < 0.05). The improvement is also practically

significant (Cohen’s d > 1: large effect).

Comparison with individual components. Figure 8 shows

the performance of the three approaches that were combined to

form TRACE, illustrating that no single approach is solely re-

sponsible for TRACE’s performance. We compare the increase in∑t=30

t=0
|S |t for each approach over None. TRACE’s performance is

both statistically and practically significant (p < 0.05 and Cohen’s

d ∼ 0.6: medium effect) when compared to the three approaches:

α = 0.1 α = 0.2 α = 0.3

0

200

400

600

800

1000 Random

SE

TRACE

(a) Varying α (c = 0.2)

c = 0.2 c = 0.4 c = 0.6

0

200

400

600

800

Random

SE

TRACE

(b) Varying c (α = 0.2)

Figure 6: Increase in

∑t=30

t=0
|S |t for naive baselines and

TRACE over None (India network)
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(a) Varying α (c = 0.2)

c = 0.2 c = 0.4 c = 0.6
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7000
Random

MB

TRACE

(b) Varying c (α = 0.2)

Figure 7: Increase in

∑t=30

t=0
|S |t for naive baselines and

TRACE over None (Irvine network)

(2a) Dynamic Eigen (DE): Choose the nodes using just Algo-

rithm 2 without any super-node formation.

(2b) Max Belief (MB): Choose the nodes with the higher belief

of being infected in that time-step, i.e. bti, I .

(2c) Community (Comm): Choose the nodes by a 0-1 knapsack

algorithm (knapsack weight = budget k) after super-node
formation.

α = 0.1 α = 0.2 α = 0.3

400

600

800

1000
DE

MB

Comm

TRACE

(a) Varying α (c = 0.2)

c = 0.2 c = 0.4 c = 0.6

400

500

600

700

800

900

DE MB

Comm TRACE

(b) Varying c (α = 0.2)

Figure 8: Performance by TRACE component (India

network)

Further, we analyze the minimum additional budget required to

achieve performance comparable to TRACE in Figure 9, revealing

the budgetary savings from using TRACE. TRACE with all its com-

ponents produces significant savings over attempting to use each

component alone.
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α=0.2
c=0.6

α=0.1
c=0.2

α=0.2
c=0.4

α=0.2
c=0.2

α=0.3
c=0.2

0%

10%

20%

30%

DE MB Comm

Figure 9: Minimum extra budget (in %) required to match

performance of TRACE (India network)

The synergy of belief states, eigenvalues and community gives

TRACE a clear advantage on both the datasets (Figure 10), where

we see an increasing divergence over time in the performance of

TRACE compared to Random and SE.

T =10 30
0
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500
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1000

15 20 25

Random

SE

TRACE

(a) India network

T =10 30
0

250

500

750

1000

15 20 25

Random

SE

TRACE

(b) Exhibition network

Figure 10: Increase in

∑t=T
t=0
|S |t over None for varying T

(α = 0.1, β = 0.25, c = 0.2)

7 CONCLUSION

We proposed a novel active screening model and an algorithm

(TRACE) to facilitate multi-round active screening for recurrent

diseases. Unlike existing works in AI literature, the Active Screen-

ing model incorporates uncertainty of health states as well as the

SEIS disease complexities of no permanent cure and a latent stage.

TRACE performs significantly better, in a scalable fashion, than the

baselines and each of its components individually in a variety of

real-world inspired settings.

Future directions include incorporating more complex disease

models (e.g. including maternal immunity, carrier states etc.), in-

cluding birth and death processes, and introducing patient hetero-

geneity (age, gender, medical history and other features) and costs

of treatment and screening into the model.
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