
Critical spatial clusters for vaccine preventable diseases
Jose Cadena

Biocomplexity Institute
Blacksburg, VA
jcadena@vt.edu

Achla Marathe
Biocomplexity Institute

Blacksburg, VA
amarathe@vt.edu

Anil Vullikanti
Biocomplexity Institute

Blacksburg, VA
vsakumar@vt.edu

ABSTRACT
Despite high vaccination rates for infectious diseases, such as
measles, there have been several big disease outbreaks in recent
years. This is, in part, due to misinformation about vaccinations
in certain sub-populations, and their spatial clustering. Identifying
potential clusters, which can result in big outbreaks in the event of
reduced vaccination rate, is an important public health challenge.
We develop a natural notion of criticality of such clusters, which
extends the problems of in�uence maximization to connectivity
constraints. We develop e�cient approximation algorithms for �nd-
ing critical clusters by exploiting the structural properties of the
problem in contact networks. We apply our methods to �nd crit-
ical clusters in the state of Minnesota, with signi�cantly higher
criticality than those obtained by heuristics used in public health.
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1 INTRODUCTION
Many childhood diseases, such as measles and Pertussis, are easily
preventable by vaccination. Therefore, it is worrisome that fairly
large outbreaks of such diseases have occurred in recent years, such
as the measles outbreaks in California in 2015 and in Minnesota
in 2017—this is despite high vaccination coverage in the US, e.g.,
⇠ 95% for MMR, the measles vaccine. One of the reasons is the
emergence of undervaccinated geographical clusters [17], often
driven by misperceptions about side e�ects of vaccines [4]. The
typical response by public health agencies is to monitor these clus-
ters, run active information campaigns, and engage community
leaders. However, such interventions are very expensive and time
consuming. Another issue is that public health departments might
not be aware of all such clusters, especially in the early stages. As
a policy design question, public health agencies are interested in
discovering which regions are “critical” spatial clusters, where a
reduction in vaccination rate could cause a big outbreak. Current
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Figure 1: Critical sets in Minnesota discovered using our
methods. These are contiguous regions that lead to large out-
breaks of measles if not properly vaccinated.

practices involve broad outreach e�orts to communities considered
at risk, which might not be e�cient if some communities are not so
critical. Formalizing the notion of critical clusters can help public
health agencies focus their limited resources in areas where impact
can be maximized. Our contributions are summarized below.
1. Formalizing critical clusters. We de�ne the criticality of a
subpopulation S as the expected number of additional infections
that would occur if the individuals in S are not properly immunized.
Our focus is on subpopulations located within a bounded spatial
cluster. We have di�erent criticality objectives, MaxCrit and ECrit,
which capture two distinct public health policy questions: is the
source of the infection within the cluster or outside? (Section 4).

Table 1: A summary of our proposed methods
MaxCrit problem ECrit problem

Motivating policy
question

Maximum criticality
for source in cluster

Maximum criticality
for a �xed source

Characteristics of
optimal solutions
(Section 3.3.1)

Less connected Centrally located

Structural property
(Section 3.3.2)

Submodular, but not
locally modular

Submodular and lo-
cally modular

Approximation
guarantee

�(1/k1/3)-
approximation
(Theorem 3)

�(1/logk )-
approximation
(Theorem 2)

Empirical observa-
tions for MN

Much higher critical-
ity, Most critical clus-
ter is in a rural region

Lower criticality than
for MaxCrit, well con-
nected

2. E�cient algorithms for the MaxCrit and ECrit problems.
We show that MaxCrit and ECrit are both NP-hard; then, we focus
on e�cient approximation algorithms for these two problems. Our
algorithms exploit structural properties of the objective function
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Figure 2: De�nitions and notation used in our paper. The
5 red circle nodes (a,b, c,d, e) form a social contact network.
Each node resides in a block group ri , and these block groups
from the auxiliary graph HR , where an edge represents that
the block groups are neighbors on the map.

and the small world structure of contact networks. MaxCrit and
ECrit are instances of submodular function maximization with con-
nectivity constraints, a very challenging problem in combinatorial
optimization. However, we show that ECrit has an approximately
modular structure, which we use to derive a good approximation
bound. For the MaxCrit objective, we use the spatial structure to ob-
tain a good approximation factor. Table 1 summarizes these bounds.
3. Application.We evaluate our algorithms on a network model
for the state of Minnesota. The sets we discover have very high crit-
icality compared to heuristics commonly considered in the public
health community. The critical clusters computed using our algo-
rithms (shown in Figure 1) havemeaningful demographic properties
from a public health perspective: they typically involve people with
lower than average income levels and age (Section 5).
4. Connections with the Influence Maximization problem.We
show that criticality is related to the classical problem of in�u-
ence maximization, but with one very signi�cant di�erence: the
set of in�uencers has to form a connected spatial cluster. As a result,
the standard greedy algorithm cannot be used for �nding critical
clusters. We are not aware of any e�cient algorithms with good
approximation bounds. The closest is an �(1/

p
k)-approximation,

which can be obtained by using the algorithm of [15] for submodu-
lar function maximization with a connectivity constraint. However,
we are able to obtain signi�cantly improved bounds by exploiting
the structure of our problems, as summarized in Table 1.

2 PRELIMINARIES
Let V denote a population, and let G = (V ,E) be a contact graph
on which a disease can spread. That is, a person � 2 V (referred to
as a “node”, henceforth) can propagate the disease to its neighbors.
In the social contact network datasets that we consider (Section
5.1.1), each person � is associated with a geographical location,
denoted by loc(�); we will consider such locations at the resolution
of census block groups. Let R denote the geographical region where
the nodes V are located—for example, the state of Minnesota—
and let R = {r1, . . . , rN } be a decomposition of R into census
block groups. For a block group ri 2 R, let V (ri ) denote the set of
nodes � with loc(�) 2 ri . For a subset of block groups R ⇢ R, let
V (R) = [ri 2RV (ri ) be the set of nodes locatedwithin it.We consider

a graph HR = (R,ER) on the set R of block groups, where two
block groups are connected if they are geographically contiguous,
i.e., they are adjacent on a map. These de�nitions are illustrated
in Figure 2. Let Conn(R) denote subsets R ⇢ R that are spatially
connected in the block group graph HR .

Table 2: Summary of the notation used in the paper

Notation Description
G = (V , E) Contact graph on set V of individuals
loc(�) Geographical location of node �
R =
{r1, . . . , rN }

Geographical region where the nodes V are located—e.g.,
Minnesota—partitioned into block groups ri

V (ri ) Set of nodes of G with loc(�) = ri
V (R) [ri 2RV (ri )
HR = (R, ER) Network on R, with adjacent block groups connected by an edge.

Sometimes referred to as the “Auxiliary network”
Conn(R) Set of R ⇢ R which are spatially connected in HR
S, E, I, R States in the disease model
� Average region-wide vaccination rate
x Vaccination vector, with xi denoting the probability that node i

is vaccinated
xR Vaccination vector, with nodes V (R) undervaccinated, where

R 2 Conn(R)
SrcA , Src Denotes the event that the source of the infection is from a set

A ⇢ R. Src is used when A = R
#inf(x, SrcA) Expected number of infections for vaccination vector x and

source being SrcA
crit(R, x, SrcA) Criticality of R 2 Conn(R): expected number of additional in-

fections that occur if R is not vaccinated
MaxCrit(R),
MaxCrit(R, x)

The objective value of MaxCrit for region R 2 Conn(R) in an
instance (G, HR, k )

ECrit(R),
ECrit(R, x)

The objective value of ECrit for region R 2 Conn(R) in an
instance (G, HR, k )

We will use an SEIR model for diseases like measles [3], where a
node is in one of four states: Susceptible (S), Exposed (E), Infected (I)
and Recovered/Removed (R). Measles is highly contagious, and an
infected node� spreads the disease to each susceptible unvaccinated
neighbor u 2 N (�) with high probability. Sometimes, we assume a
transmission probability of 1, but all our results extend to the more
general case. If � is vaccinated, it does not get infected. We assume
the vaccine has 100% e�cacy, which is not true in practice, but this
is not crucial for our methodology.

Let � denote the average region-wide vaccination rate—⇠ 0.97
in Minnesota. Let x be a vaccination vector : xi 2 [0, 1] denotes the
probability that node i is vaccinated (so xi = � , by default). Let
SrcA denote the source of the infection: this could be one or a small
number of nodes from a region A ⇢ R, which initially get infected
(e.g., by contact outside R). We will drop the subscript if A = R.
Let #inf(x, SrcA) denote the expected number of infections for the
intervention x, when the initial infection is at SrcA. When the initial
conditions are clear from the context, we denote this by #inf(x).

2.1 Criticality and Problem Formulations
For a vaccination vector x, let xS denote the corresponding inter-
vention where a subset S ⇢ V of nodes is undervaccinated, and the
remaining nodes are vaccinated with the same probability as in x;
that is xSi = xi for i < S and xSi = � 0 for i 2 S , where � 0 is much
lower than � , the region-wide vaccination rate. For simplicity, we
sometimes consider � 0 = 0.

We de�ne the criticality of a set S ⇢ V as crit(S, x, SrcA) =
#inf(xS , SrcA) � #inf(x, SrcA), which is the expected number of ad-
ditional infections that occur if S is not vaccinated (with respect to
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any speci�c initial conditions SrcA). Our focus is on �nding spatial
clusters of high criticality. Speci�cally, we will focus on S = V (R)
for a connected region R 2 Conn(R). We denote this by

crit(R, x, SrcA) = #inf(xR , SrcA) � #inf(x, SrcA),
which is the expected number of extra infections that might be
caused if the nodes in the connected region R are under-vaccinated.

We focus on �nding “small” connected regions, since this can
lead to an actionable policy for public health agencies. We model
this by adding a constraint |R |  k , where k is a parameter that can
be tuned based on the available resources of a public health agency.

We propose two problems that model two di�erent kinds of
initial conditions of interest from a public health perspective. The
�rst problem models the following question: for any speci�c initial
condition (e.g., Src denotes kids in an elementary school), what is the
most critical set?

P������ 1 (k�EC���(G,HR ,k)). Given an instance (G,HR ,k),
�nd a connected region R 2 Conn(R) of size at most k that maximizes
criticality:

R = argmaxR0 2Conn(R), |R0 |k crit(R0, x, Src)
For convenience, we will sometimes also use ECrit(R, x, Src) or

ECrit(R) to denote crit(R, x, Src), the objective value of ECrit for
region R in an instance (G,HR ,k). The second problem models the
following question: what is the most critical cluster if the infection
source is the worst possible, which will happen if the infection starts
within the undervaccinated cluster itself? This is formalized as

P������ 2 (k�M��C���(G,HR ,k)). Given an instance (G,HR ,k),
�nd a connected region R 2 Conn(R) of size at most k that maximizes
criticality over all choices of source:

R = argmaxR0 2Conn(R), |R0 |k,SrcR0 crit(R
0, x, Src0R )

In other words, the k-MaxCrit problem involves maximizing
over all possible choices of the sources SrcR0 in the cluster R0. As
before, we will use MaxCrit(R, x, Src) or MaxCrit(R) to denote the
objective value of an instance of the problem.

3 KEY PROPERTIES OF CRITICALITY
We start by describing connections between the proposed MaxCrit
and ECrit objectives, and in�uence maximization, which will have
implications on the computational complexity. We also prove struc-
tural properties of these objectives, later used in our algorithms.

3.1 Complexity and connections with
In�uence Maximization

In the In�uence Maximization (I��M��) problem [12], we are given
a directed graphG = (V ,E) and edge weightsp(u,�) 2 [0, 1] indicat-
ing the probability that node u in�uences node � . The Independent
Cascade model is a special case of the SEIR model, where each node
is infectious for exactly one time step. The goal is to �nd a set
S ⇢ V of k seed nodes to infect, such that the expected number
of in�uenced nodes or spread, � (S), is maximized. There has been
a lot of work on the I��M�� problem since its introduction by
[12]. An instance of I��M�� consists of a single contact graph G,
whereas instances of the MaxCrit and ECrit problems consist of
the contact graph G, a partition of the nodes of G into regions, R,
and an auxiliary graph HR that captures connectivity among R.

3.1.1 NP-hardness. I��M�� can be reduced to MaxCrit and
ECrit, which implies their NP-hardness. The proof is by construct-
ing a suitable auxiliary graph HR , a vaccination vector x, and a
source Src. This is summarized in Theorem 1, whose proof is pre-
sented in the Appendix in the full version of this paper [1].

T������ 1. MaxCrit and ECrit are NP-hard.

3.1.2 Impact of connectivity requirement. The connectivity con-
straint has a strong e�ect on the solution of MaxCrit and ECrit.
In particular, a solution computed for I��M�� using the greedy
algorithm of [12] can be arbitrarily suboptimal for the problems
we propose. Informally, this follows from the property of I��M��
that it is better to choose the set of seeds to be located far apart, so
that their combined in�uence is maximized.

O���������� 1. There exists a family of instances (G,HR ,k) for
which the optimum solution S⇤ to MaxCrit satis�es MaxCrit(S⇤) =
O( 1k I��M��(Ŝ)), where Ŝ is the optimum solution to the I��M��
version for this instance, without any connectivity requirements.

3.2 Submodularity of MaxCrit and ECrit
A set function f : 2V ! R is said to be submodular if it satis�es the
diminishing returns property: for anyT ⇢ S ⇢ V and x 2 V \ S , we
have that f (T [x)� f (T ) � f (S [x)� f (S). We have the following
result:

L���� 3.1. MaxCrit and ECrit are submodular.

The proof is presented in the full version, but the argument is
similar to the submodularity proof for the I��M�� problem.

3.3 Di�erences between MaxCrit and ECrit
While these two problems model related public health problems,
they have some signi�cant di�erences, both in terms of the structure
of the optimum solutions and a locality property, which is useful
in designing e�cient algorithms.

3.3.1 Di�erence in the structure of optimal solutions. The solu-
tion structure for both problems can be very di�erent in the worst
case. Consider a contact graphG split into regionsR = {r1, . . . , rN }.
For each ri , we assume V (ri ) has n nodes. The auxiliary graph HR
consists of two disjoint sets: graph H1 induced by r1, . . . , rN�k 0 ,
and graph H2 induced by rN�k 0+1, . . . , rN . For each i  N �k 0, the
graph G[V (ri )] is a connected component. The graph H1 forms a
chain, with V (r1) having an edge to V (r2), V (r2) having edges to
V (r1) and V (r3), etc. We have Src to be a node s 2 V (rn0), where
n0 = b(N � k 0)/2c. The graph G[H2] restricted to H2 is fully con-
nected, but it is disconnected from H1; we also choose it so that
G[H2] has more nodes than H1. Then, an optimum solution to the
ECrit problemwith Src will be the cluster ofk block groups centered
at rn0 , with criticality ofO(kn+ 2n/� ), by considering a percolation
process on a chain. If we choose k 0 > k + 2/� , the optimal solution
to the MaxCrit problem on this instance will be a cluster of k block
groups from H2, since the fully connected structure in H2 will lead
to a larger outbreak.

3.3.2 Local modularity property. ECrit has a local modularity
structure, which is motivated by [14]. Speci�cally, for a setA1[A2[
. . .Ar of disjoint and roughly similar sized clusters, ECrit(A1[A2[
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. . .Ar ) � c ·Õi ECrit(Ai ), for a constant c < 1. This is di�erent in
form from the notion of (r ,� )-local function of [14]. A function F (·)
is (r ,� )-local if F (A1[A2) � F (A1)+�F (A2) for two setsA1 andA2,
which are distance r away. It is not clear that ECrit satis�es such
property, but the speci�c kind of property it satis�es is su�cient
for using the subsequent technique of [14]. In contrast, we show
that the MaxCrit is not locally modular.

We assume our contact graph is a “small world” network, fol-
lowing the model of [13] in which nodes have local connections
to nearby nodes and a small number of long range connections.
A node u has a long range connection to node � with probability
proportional to 1

d�u�
, where � is the “power law exponent”, typi-

cally � > 2. We will consider a set of clusters A1, . . . ,Ar , where
Ai has size ni . We assume all clusters have roughly similar size,
so ni  nj� for a constant � . We assume the clusters are small,
speci�cally ni 

p
n. For the analysis below, we assume the disease

is highly contagious and there is enough local connectivity within
each cluster. Therefore, if nodes in Ai are not vaccinated, and some
node � 2 Ai gets infected (from outside the cluster), the entire
cluster will get infected. We also assume the clusters Ai are fairly
localized, so that we can consider di j to be the distance from the
centroid of Ai to that of Aj . For simplicity of the analysis, we will
assume that in the small world network model forH , the probability
that a node u in Ai connects to a node � in Aj is proportional to
1
d�i j

. The following Lemma—proven in the full version—shows the
local modularity of ECrit.

L���� 3.2. LetA1, . . . ,Ar be disjoint clusters, with the model and
notation as described above. Then,

ECrit(A1[A1[. . .Ar ) �
1

1 + 3� �/(� � 1)

✓
ECrit(A1)+. . .+ECrit(Ar )

◆

In contrast, MaxCrit does not satisfy the property from Lemma
3.2. Consider a setting where each block group induces a clique,
which is disjoint from all other block groups. Then, MaxCrit(A1) /
maxb 2A1 |V (b)| is proportional to the largest block group in the set
A1. Similarly, we have MaxCrit(A2) / maxb 2A2 |V (b)|. For disjoint
sets A1,A2, we have
MaxCrit(A1 [A2) = max

b 2A1[A2
|V (b)| < MaxCrit(A1)+MaxCrit(A2)

4 PROPOSED METHODS
4.1 Algorithm A�����EC���
Our algorithmA�����EC��� uses the locality property fromLemma
3.2 and builds on the approach of Krause et al. [14] and Borgs et al.
[5]. Algorithm 1 gives a pseudocode description, and we give the
intuitive ideas below.

(1) Padded decompositions. This is a partition of the graph
HR into clusters C1, . . . C` , each of diameter at most 12r . If
a node � and all nodes at distance at most r of � are in the
same cluster, we say that � is r -padded. After clustering, all
the nodes that are not r -padded are removed; this occurs
with probability 1/2 for each node, and the best solution S
of size k after removal has objective value F (S) � 1

2F (S⇤),
where S⇤ is the optimal subgraph of size k .

(2) Greedy solution in the clusters.The purpose of the padded
decomposition was to partition the graph into small clusters

Algorithm 1 A�����EC���(G, HR, k, Src).
1: Partition HR into clusters C1, . . . C` , each of diameter at most 12r ,

using the method of [14] (referred to as a Padded decomposition)
2: For each cluster Ci = {ri1, . . . , ri j }, let (ria1, ria2, . . . , riaj ) =

G�����(Ci , j, Src), be an ordering of block groups obtained by run-
ning G����� without connectivity constraints

3: Construct a connected graph G0 on the nodes {ria1 : i = 1, . . . , ` }
with an edge (ria1, r ja1 ) having weight equal to the shortest path
length in HR . Run the Budgeted Steiner Tree algorithm of [11] to �nd
a tree T with k nodes and maximum total criticality

4: for r 2 HR do
5: Let wtr = crit(r )
6: end for
7: Let T 0 = k �M��ST(HR, wt, k ) using the algorithm of [6]
8: return max{ECrit(T ), ECrit(T 0)}

Algorithm 2 G�����(C, j, Src).
1: S = � , L = c j |E | log |V |, for a constant c
2: ` = 0
3: while ` < L do
4: Pick random subgraph G0 of G with (1) edges sampled based on

disease transmission probability, (2) node � 2 V (C) sampled with
probability 1 � � 0, (3) � < V (C) sampled with probability 1 � �

5: ` = ` + |E(G0) |
6: Let Ci be the set of components reachable from Src in G0

7: S = S [ {Ci }
8: end while
9: Initialize X = �
10: For each r 2 C, de�ne de�(r, S) to be the number of sets Ci 2 S that

contain some node in V (r )
11: for i = 1 to j do
12: Append r = argmaxr 0de�(r 0, S) to X
13: Remove all sets Ci hit by V (r ) from S and update all de�(·)
14: end for

where we can ignore the connectivity cost [14]. For each
cluster, we now run the greedy algorithm for submodularity
maximization to obtain an ordering of the nodes; the �rst
j nodes in this ordering are approximately the most infor-
mative nodes in the cluster. We implement Algorithm 2, a
modi�ed version of the algorithm in [5] to account for the
fact that we want a graph that is connected in the auxiliary
graph, but with the epidemic process occurring in the social
contact network. The greedy algorithm degrades the quality
of the optimal solution by a factor of at most (1 � 1/�).

(3) Running Quota Steiner Tree on R. Finally, we compute
wtr for each r 2 R, and then compute a quota Steiner tree
T 0 of size k , which maximizes

Õ
r 2T 0 wtr . The subroutine

k-M��ST uses the �xed parameter algorithm of [6] to �nd
an optimal solution, as described in Section 4.2.1.

T������ 2. Let S⇤ denote an optimal solution to an instance of
the ECrit(G,HR ,k, x, SrcA) problem. Let S be the cluster returned by
A�����EC���. If HR forms a small world network, and the sizes of all
block groups in R are within a constant factor of each other, then S has
O(k) nodes and ECrit(S, x, SrcA) � �( 1

1+3c 0� �/(��1) )ECrit(S
⇤, x, SrcA),

where � , � and � are as de�ned in Lemma 3.2. The worst case running
time of A�����EC��� is O(|R||E |k(2e)k ).
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4.2 Algorithm A�����M��C���

Algorithm 3 A�����M��C���(G, HR, k ).
1: for r 2 HR do
2: Let Cr be the set of block groups within distance B = O (k2/3) of r

in HR . Construct graph HR[C] induced by the block groups in C
3: Run G�����(C, B) with the following modi�cation: the source in

the sampling step is picked from V (C) randomly in each iteration.
Let r1, r2, . . . , rB be the block groups which are picked

4: Construct a minimum Steiner tree Tr of r1, . . . , rB
5: end for
6: for r 2 HR do
7: Let wtr = crit(r )
8: end for
9: Let T 0 = k �M��ST(HR, wt, k ) using the algorithm of [6]
10: return max{maxr MaxCrit(Tr ), MaxCrit(T 0)}

Algorithm A�����M��C��� uses ideas from [15], who consider
the problem of connected submodular function maximization. The-
orem 3 gives a signi�cantly better approximation bound with better
running time than [15] by exploiting the spatial properties of our
problem. As in the case of A�����EC���, we also consider a quota
Steiner tree and take the best of the two solutions.

T������ 3. For an instance (G,HR ,k), let Ŝ be the solution re-
turned by A�����M��C���. Let S⇤ be the optimum solution for this
instance. If the aspect ratio of the bounding box containing R and
each block group is constant, MaxCrit(Ŝ) � �( 1

k1/3 )MaxCrit(S⇤). The
worst case running time is O(|R|k2/3 + |R | |E |k(2e)k ).

P����. (Sketch) For simplicity, assume each block group is a
square; the arguments extend easily with a constant factor increase
in the approximation bounds, since the aspect ratios are constant.
Our proof is in two parts: (1) for any r , the Steiner treeTr has at most
k nodes, (2) there is a set ofO(k1/3) treesTr 01 , . . . ,Tr 0s , such that they
together cover S⇤. We �rst argue that the theorem follows from
these two statements. Statement (1) above implies that each Tr is a
feasible solution to k-MaxCrit, sinceTri is a connected subgraph in
HR . Statement (2) implies

Õ
i MaxCrit(Tr 0i ) � MaxCrit(S⇤), by sub-

modularity. Thus, there exists a node ri such that MaxCrit(Tr 0i ) �
�(1/k1/3)MaxCrit(S⇤), and the theorem follows.

We now prove statement (1). We consider any node r in HR .
First, observe that a set of O(k2/3) square subgraphs, each of side
O(k1/3) covers HR ; let these be �1, . . . ,�s . Next, there exists a tree
T 0 of length O(k2/3 · k1/3) = O(k) that connects the centers of all
the squares �i . Then,T 0 can be augmented with additional paths to
connect all the nodes r1, . . . , rB , with only a constant factor increase
in the number of nodes. This follows because each ri is within some
square �j of size O(k1/3) ⇥O(k1/3), so that it can be connected to
T 0 with a path of length at most O(k1/3). Since B = O(k2/3), tree
Tr connects all the r j ’s with a total length of O(k).

Finally, we prove statement (2). Consider a tree T ⇤ spanning S⇤.
We �nd the trees Tr 01 , . . . above in an iterative manner. First, pick a
leaf r 01 of T

⇤, and remove from T ⇤ all the block groups which are
within distancek2/3 of r 01, and repeat the process on the residual tree.
Each such tree Tr 01 covers at least �(k

2/3) nodes of T ⇤. Therefore,
O(k1/3) trees computed in this manner cover T ⇤. ⇤

4.2.1 Subroutine k-M��ST for the quota Steiner tree problem.
Both algorithms A�����EC��� and A�����M��C��� involve solv-
ing an instance of the quota Steiner tree problem: given a graph
HR , a weight wtr for each r 2 R, and a parameter k , the objec-
tive is to compute a tree T 0 in HR with at most k nodes, such
that

Õ
r 2T 0 wtr is maximized. There are constant factor approx-

imations for this problem [21]. Here, we adapt the randomized
�xed-parameter tractable algorithm of Cadena et al. [6] for Prize-
Collecting Steiner Tree, which gives an optimal solution with high
probability. The algorithm relies in the seminal color-coding tech-
nique of Alon et al. [2]. Naively, one could �nd a solution to k-
MaxST by exhaustively checking all the possible

�n
k
�
subgraphs of

k nodes in time O(nk ). The algorithm does a random k-coloring of
the nodes of HR , and it only considers maximum weight trees of
each size that are “colorful”—this means all the nodes have distinct
colors. It can be shown that such colorful solutions can be computed
using a dynamic program. Further, the optimal solution is colorful
with probability k!/kk , which is large enough for the algorithm
to work. Thus, the color coding technique allows us to reduce the
search space to O((2e)k ), keeping the computation feasible.

5 EXPERIMENTAL RESULTS
Our experiments focus on the following questions:

(1) Finding critical clusters. Can we �nd highly critical re-
gions with our proposed methods? How do they compare to
standard baselines used in public health? (Section 5.2)

(2) Demographics. What are the demographic properties of
critical clusters? Where are they located? (Section 5.3)

(3) MaxCrit vs. ECritWhat are the di�erences and similarities
of the clusters discovered under the two proposed problems?
(Section 5.4)

5.1 Experimental Setup
5.1.1 Dataset and disease model. A study of epidemics that

spread through physical proximity requires social contact networks
in which an edge represents an actual physical contact between
two people at some location during the day. Such networks are not
readily available and cannot be constructed easily because of the
di�culty in tracking contacts for a large set of people. This has
been recognized as a signi�cant challenge in the public health com-
munity, and multiple methods have been developed to construct
large scale realistic contact network models by integrating diverse
public datasets (e.g., US Census, land use and activity surveys) and
commercial data (e.g., from Dunn & BradStreet on location pro�les).
We use models developed by the approach of [8];1 see also [9, 19] for
network models developed by other public health groups.2 Multiple
such network models were evaluated in a study by the Institute of
Medicine [10].

Here, we focus on a population for Minnesota with 5, 048, 920
individuals in total, which are aggregated into 4,082 census block
groups from the 2010 U.S. census. We consider an SEIR type of sto-
chastic model for measles, as described earlier in Section 2. For the
MaxCrit formulation, the criticality of a cluster C of block groups
1See ndssl.vbi.vt.edu/synthetic-data/download for networks available for download.
2Models are available at http://www.epimodels.org/drupal/?q=node/70 and https://
www.rti.org/impact/synthpop
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is assessed by leaving every individual inside C unvaccinated; ev-
erybody else in the population is vaccinated with probability 0.97,
which is the statewide vaccination rate. The source Src is picked as
a set of three nodes in C. For the ECrit formulation, we focus on
the Minneapolis metropolitan area, and pick Src to be a set of 100
children. As before, we assess the criticality of a cluster by leaving
its inhabitants unvaccinated, with a 0.97 vaccination rate elsewhere.

5.1.2 Baseline Methods. We compare our algorithms with two
heuristics used in epidemiology and a naive random baseline.

(1) P���������. Find a cluster of size k with the largest total
population. The motivation behind this heuristic is leaving
as many people as possible unvaccinated.

(2) V������������. The vulnerability of an individual is the
probability that this personwill get infectedwhen the disease
is left to propagate with no intervention—i.e., x� = 0 for all
nodes. This baseline �nds a cluster of size k with as large
total vulnerability as possible, thus prioritizing individuals
who are most likely to get infected.

(3) R�����. Find a connected cluster of size k by doing a ran-
dom walk on the auxiliary graph.

5.2 Optimization power
In Figure 3, we show the criticality obtained by A�����M��C���
(top) and A�����EC��� (bottom) compared to the three baseline
methods as a function of k . As expected, selecting subgraphs at ran-
dom performs poorly and results in almost no additional infections
compared to the initial disease conditions. Surprisingly, V�������
������ does not performmuch better than random, especially on the
MaxCrit objective. It is also interesting that the population-based
heuristic does not have monotonic improvement with k . For the top
plot, even though the subgraph of size 9 has 55,800 inhabitants, the
smaller subgraph of size 5 with a population of 34,000 leads to a sig-
ni�cantly larger outbreak. Overall, the population-based heuristic
has better performance among the baselines, and it even surpasses
our algorithm for k = 5 in MaxCrit. However, both A�����M���
C��� and A�����EC��� exhibit notably better performance. For the
ECrit objective, the 11-node cluster discovered using our method
leads to 8 times more infections than the baselines.

Another important quantity is the probability of having a large
outbreak. In Figure 4, we show the distribution of criticality values
for each method over 100 simulations of the disease model. For
the MaxCrit objective (top), we observe that even the largest out-
breaks caused by V������������ and R����� are much smaller
than those of A�����M��C��� and the P��������� baseline. We
also note that the population-based clusters have larger variance
in criticality and can result in larger outbreaks than those from
our algorithm. We observe a similar e�ect on the ECrit formula-
tion (bottom), where the 9-node P��������� cluster has extreme
cases with more infections than A�����EC���. This suggests that
if the goal for a public health department is to prevent the worst-
case scenario, then intervening the most-populated areas is a good
heuristic. However, in doing so, one could miss smaller regions that,
on average, are likely to infect more people.

Figure 3: Comparison of algorithms for MaxCrit (top) and
ECrit (bottom) as a function of the solution size k

5.3 Critical clusters and demographics
We compare the distribution of age and income in the cluster dis-
covered by A�����M��C��� (k = 11) to that of the entire state. We
aggregate household income into “Low” (below $25,000), “Medium”
(between $25,000 and $75,000), and “High” (above $75,000). Ages
are binned into “Pre-school” (below 5 years old), “School” (between
5 and 18 years old), “Adult” (between 18 and 70 years old), and
“Senior” (above 70 years old). In Figure 5, we see the critical cluster
has signi�cantly more households of low income compared to the
entire state—19.6% to 34.9%. Similarly, in the discovered cluster,
children are over-represented. 26.6% of the population are children
in “School” age compared to the national average of 18.7%.

We �nd critical clusters in di�erent regions over Minnesota.
Figure 1 shows the top 10 non-overlapping clusters discovered us-
ing A�����M��C���. The most critical cluster—with over 5,000
infections—is located on the rural northern part of the state, span-
ning the Leech Lake and Red Lake reservations. We note that this
cluster results in the largest spread despite having a relatively
small population of 14,910 people, compared to clusters in urban
regions. For example, the second most critical cluster—north of
Minneapolis—has 48,889 inhabitants.

In addition to analyzing the most critical cluster, we look at the
top-5 non-overlapping clusters discovered by A�����M��C���.
These correspond to di�erent choices of root on the k-M��ST
algorithm. In Table 3, we report the total population size, criticality,
and percentage of infections to the total population of the cluster—
i.e., criticality / population. Note that this latter number could be
larger than 1, since there are infections outside the cluster. As
we discussed before, the top region leads to a large spread (41%
of its population size) despite having less inhabitants than the
successive clusters. However, the second cluster follows right after,
with virtually the same criticality score, but in a more urban region.
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Figure 4: Criticality scores on theMaxCrit objective (top) and ECrit objective (bottom) over 100 runs of the simulation for each
method evaluated

Figure 5: Average income (top) and age (bottom) in the en-
tire state (left) and in the cluster discovered by A�����M���
C���. There are more children in school age and lower in-
come households in the discovered critical cluster.

Table 3: Total population and criticality in the top 5 clusters
discovered by A�����M��C���

Rank Population Criticality % population
1 14,910 6,138 41.2%
2 48,889 6,093 12.5%
3 23,391 1,388 5.9%
4 15,731 647 4.1%
5 9,936 372 4.7%

For ECrit, we focus on Minneapolis. In Figure 6, we show the
most critical clusters for this region. The cluster that produces the
largest spread covers the city of Brooklyn Park, which is a “majority-
minority” suburb with a large immigrant population.3 However, we
emphasize the need for domain-expert analysis to better interpret
and make use of these results. In Table 4, we report the population
3https://tinyurl.com/y97k7y2l

Figure 6: Critical clusters in Minneapolis on the ECrit objec-
tive with seeds being children of ages 10 and below.

Table 4: Total population and criticality in the top 5 clusters
discovered by A�����EC���

Rank Population Criticality % population
1 22,273 858 3.9%
2 20,149 58 .3%
3 12,248 40 .3%
4 8,998 14 .2%
5 9,620 12 .1%

and criticality for the 5 most critical clusters. The di�erence in
criticality between the �rst and second clusters is striking even
though their population size is very similar.

5.4 MaxCrit and ECrit
In order to compare clusters from both formulations, we repeat
our experiments for the MaxCrit objective on the Minneapolis area
instead of the entire state. We �nd that the clusters discovered
with both formulations overlap by a large margin. In Figure 7, we
show the MaxCrit clusters in orange circles and the ECrit clusters
in blue markers. Not only do the clusters cover the same parts of
Minneapolis, but the criticality ranking is the same too. For instance,
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Figure 7: MaxCrit and ECrit clusters in Minneapolis. Both
solutions �nd similar critical clusters.

the most critical cluster using MaxCrit covers Brooklyn Park, just
as the ECrit cluster that we discussed in the previous section; this
result holds even though the seeds for MaxCrit are chosen from
the entire population, whereas we chose children only for ECrit.

6 RELATEDWORK
Traditionally, epidemiological models have been di�erential equa-
tion models, which assume very simplistic mixing patterns of the
underlying population. In the last decade, a number of research
groups have developed agent-based methods using complex net-
work models as a way to handle these issues [8–10, 18, 19]. Such
methods have been used for policy analysis by local and national
government agencies [10]. Since data for large scale contact net-
works is not available, we use this paradigm in our work.

All prior work on undervaccinated clusters has been restricted
to identi�cation. For instance, Lieu et al. [17] analyze electronic
health records among children in 13 counties in Northern Califor-
nia and identify various signi�cant geographic clusters of under-
immunization and vaccine refusal, using spatial scan statistics. How-
ever, such methods are not directly useful for the policy questions
of identifying critical clusters, which is our focus here.

There has been a lot of work on di�erent kinds of detection
problems related to outbreaks in networks. For instance, Christakis
and Fowler [7] use the “friend of random people” approach to
monitor a subset of people and infer characteristics of the epicurve
for the entire population. Leskovec et al. [16] study the problem of
early detection of di�erent kinds of events—e.g., in water networks
or social networks. However, these approaches have been focused
on either just detecting that some event (e.g., start of an infection)
has occurred or the epidemic characteristics for the entire region.
Instead, we are interested in �nding regions that would lead to a
big number of infections if left unvaccinated.

Our work is also related to submodular function maximization
with connectivity constraints. This constraint makes the problem
much harder than other constraints, such as cardinality or matroid
constraints, which can be approximately optimized using a simple
greedy procedure [20]. The most relevant work is by Kuo et al. [15],
who proposed a �(1/

p
k) approximation algorithm to this problem.

We are able to obtain an improved �(1/k1/3) approximation for
MaxCrit by exploiting the spatial structure in our problem. Finally,

Krause et al. [14] propose an approximation algorithm for bud-
geted submodularity maximization on graphs based on exploiting
local structure. Our algorithm for ECrit builds on this approach by
exploiting a slightly di�erent type of local modularity bound.

7 CONCLUSIONS
Our work is motivated by public health policy questions of quan-
tifying potential risks of large outbreaks as a result of reducing
vaccination rates in a cluster. We formalize two problems, ECrit
and MaxCrit, for �nding critical clusters for highly contagious dis-
eases that can be prevented by vaccination. These two formulations
have di�erent properties and solution structure, and they capture
two di�erent policy questions. We show that these problems are
variants of the classical in�uence maximization problem, with an
additional connectivity requirement on an auxiliary network, and
we design algorithms with rigorous approximation guarantees. Ex-
perimental results show that our formulations perform signi�cantly
better than heuristics from epidemiology. Such an approach can
help public health agencies prioritize response to the challenges of
reduced vaccination coverage.
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