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ABSTRACT
Models of spread processes over non-trivial networks are com-

monly motivated by modeling and analysis of biological networks,

computer networks, and human contact networks. However, iden-

ti�cation of such models has not yet been explored in detail, and

the models have not been validated by real data. In this paper, we

present a su�cient condition for asymptotic stability of the healthy

equilibrium, show that the condition is necessary and su�cient

for uniqueness of the healthy equilibrium, and present a result on

learning the ratio of the spread parameters. Finally, we employ John

Snow’s seminal work on cholera epidemics in London in the 1850’s

to validate an approximation of a well-studied network-dependent

susceptible-infected-susceptible (SIS) model.
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Mathematical models of virus spread have been studied for cen-

turies [2]. Recently these models have been extended to include

network structure. In this work we focus on SIS models with infec-

tion parameters βi and a healing rates δi . A virus model is called

homogeneous if the infection and healing rates are the same for

every agent, and heterogeneous if they are di�erent for each agent.

In this work, we focus on discrete-time SIS models, mainly for the

more general, heterogeneous models. For reviews on epidemic

processes see [8, 10].
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While parameter estimation of epidemic spread with real data

has been carried out for some models [6, 7, 15], the previous work

has either not had network structure included or employed a large

probabilistic model. Ignoring network structure is tantamount to

making a strong simplifying assumption, and using a full probabilis-

tic model can become very computationally expensive as the size

of the network grows. For these reasons we focus on a nonlinear

network-dependent ordinary di�erential equation model. To the

best of our knowledge, no work has been done on the identi�cation

of spread parameters from data for these models. Many virus spread

papers using these models have claimed to use real data to test their

models, but no true validation of non-trivial network-dependent

SIS spread models has been done. Previous work has used real

data to identify underlying network structure, however there have

been no prior e�orts that have considered spread process data and

identi�cation over these networks. [4, 14].

We use the cholera dataset compiled by John Snow in [12] to

validate the spread model analyzed in this work. Dr. Snow mapped

the deaths caused by cholera in the Soho District of London in 1854

to illustrate that the infection was being spread by contaminated

water via a speci�c pump, the Broad Street pump, and not via the

air, as was the belief at the time. �is seminal work by Snow has led

to the modern day �eld of epidemiology [3]. While now, partially

due to Snow, we understand cholera, how it spreads, and how to

mitigate it, this illness is still a serious problem in poorer parts of the

world today, highlighted by the current outbreak in Yemen where

there have been over one million suspected cases of cholera and

over 2,270 cholera-related deaths since the end of April 2017 [1].

John Snow’s original spatial dataset of the cholera epidemic is

static and does not contain time series data. Shiode et al. created

spatial time series data, presented in [11] using additional sources

and some statistical methods. However, Shiode et al. did not per-

form any dynamic analysis on their dataset, and have not made

the dataset publicly available. We use a technique developed in the

analysis section herein, combined with several strong but reason-

able assumptions, to reproduce time series data, and in so doing,

validate the model with the dataset. As far as we know, this is

the �rst a�empt to study Snow’s cholera dataset from a dynamical

systems’ perspective to validate models of epidemic processes.

1 SIS MODEL
We focus on a discrete-time SIS model. �e state xi can correspond

to the probability of infection of the ith agent [13] or the infected
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proportion of group i [5]. For the identi�cation of the spread process

parameters in Section 3 we employ the la�er case. We model the

system dynamics by

xk+1

i = xki + h
©«(1 − xki )βi

n∑
j=1

ai jx
k
j − δix

k
i
ª®¬ , (1)

where k is the time index and h > 0 is the sampling parameter. We

write (1) in matrix form as

xk+1 = xk + h((I − Xk )BA − D)xk , (2)

where Xk = diaд(xk ), B = diaд(βi ), and D = diaд(δi ). Note that A
is the matrix of ai j ’s and is not necessarily symmetric.

For the model to be well-de�ned we make several assumptions.

Assumption 1. For all i ∈ [n], we have x0

i ∈ [0, 1].
Assumption 2. For all i ∈ [n], we have βi ≥ 0, δi ≥ 0 and, for

all j ∈ [n], ai j ≥ 0.

Assumption 3. For all i ∈ [n], hδi ≤ 1 and hβi
∑
j,i ai j ≤ 1.

Lemma 1.1. For the system in (2), under the conditions of Assump-
tions 1, 2, and 3, xki ∈ [0, 1] for all i ∈ [n] and k ≥ 0.

Lemma 1.1 implies that the set [0, 1]n is positively invariant with

respect to the system de�ned by (2). Since xi denotes the fraction

of group i infected, or is an approximation of the probability of

infection of individual i and 1−xi denotes the fraction of group i that

is healthy, or is an approximation of the probability of individual i
being healthy, it is natural to assume that their initial values are in

the interval [0, 1], since otherwise the values will lack any physical

meaning for the epidemic model considered here. �erefore, we

focus on the analysis of (2) only on the domain [0, 1]n .

We also make the following assumption to ensure non-trivial
virus spread.

Assumption 4. We have h , 0 and ∃i , j s.t. βi j > 0.

Note that we do not assume the healing rates to be nonzero. �is

allows for the possibility of SI (susceptible-infected) models.

2 ANALYSIS
For analysis purposes we need an assumption on the structure of

the BA matrix. A square matrix is called irreducible if it cannot be

permuted to a block upper triangular matrix.

Assumption 5. �e matrix BA is irreducible.

Note that this assumption is equivalent to the underlying graph

being strongly connected.

Theorem 2.1. Suppose that Assumptions 1-5 hold for (2). If ρ(I −
hD + hBA) ≤ 1, then the healthy state is asymptotically stable with
domain of a�raction [0, 1]n .

Proposition 1. Suppose that Assumptions 1-5 hold. If ρ(I −hD +
hBA) > 1, then (2) has two equilibria, 0 and x∗, where x∗ � 0.

Theorem 2.2. Under Assumptions 1-5, the healthy state is the
unique equilibrium of (2) if and only if ρ(I − hD + hBA) ≤ 1.

�e following corollary shows that the ratio of the spread param-

eters can be recovered for the heterogeneous case with di�erent

δi ’s and βi ’s for each agent (and includes the homogeneous case as

a special case) if A and the endemic state are known.

Figure 1: Map of cholera spread in London in 1854 compiled
by John Snow [12]: healthy water pumps, the contaminated
pump, and household deaths are depicted by blue diamonds,
the yellow diamond, and black rectangles, respectively.

Figure 2: Digitization of Figure 1: �e healthy water pumps,
the contaminated pump, and the deaths are depicted by blue
diamonds, the yellow diamond, and red dots with the diam-
eters scaled by the number of deaths, respectively.

Corollary 2.3. Considering the model in (1) under Assumptions
1-5, if A and the endemic state, x∗ � 0, are known, then

δi
βi
=
(1 − x∗i )

x∗i

n∑
j=1

ai jx
∗
j . (3)

We will use the above corollary in the validation work that follows.

3 VALIDATION: SNOW DATASET
Now we employ the seminal cholera dataset collected by John Snow

[12] for validation of the model in (1).

3.1 Snow Dataset
Snow depicted the number of deaths per household caused by

cholera in the Soho District of London in 1854 on a map of the area.

In Figure 1, the original map is shown, where each small rectangle

corresponds to one death at that address. Snow created this map to

illustrate to o�cials that the cholera epidemic was being spread by

infected water from the Broad Street pump (the yellow diamond),

and not through the air, the common belief at that time. We have

plo�ed this data in Figure 2, with diamonds indicating the water
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Figure 3: Total deaths per day in the Soho District of London
in 1854, compiled by John Snow (from Table I in [12]).

pumps and red dots indicating deaths. �e dataset is comprised

of 250 households with at least one death. Snow also documented

the cumulative deaths per day in Table I of [12], plo�ed in Figure

3. �e time of deaths for each address is not recorded. �e total

cumulative deaths in the table is 616, but the total number of deaths

on the map are 489. �erefore, there is a discrepancy of 127 deaths,

whose household addresses are not included in the map.

3.2 Spread Validation
For the validation, each household with a death recorded by Snow

in the map in Figure 1 corresponds to a node in the model. �e last

node in the model corresponds to the contaminated pump, the one

on Broad Street, and we do not include the healthy water pumps

in the model. We realize that ignoring the households with no

recorded deaths and ignoring the healthy pumps are nontrivial

assumptions. However, as was noted by Snow, many residents

�ed the city once they became aware of the outbreak [12]. For

the households that did not �ee, we assume they either had such

a high healing rate that their inclusion would have been trivial

and/or that these households exclusively drank from another pump

and did not closely associate with neighbors who did drink from

the Broad Street pump. Despite these (and subsequent) relatively

strong assumptions, the validation results are quite promising.

�e state of the system, xk , is the percentage of total deaths

in each household up to time k . �e epidemic equilibrium of the

system, which we call x∗, was calculated from the data in Figure

2, for the �rst a�empt, by dividing the total number of deaths in

each household by 20, and therefore assuming that each household

has 20 members. �is number was chosen because the maximum

number of deaths was 15. For the last a�empt we approximated the

household sizes using Figure 1 in [11]; see Table 1. �e last element

of x∗, corresponding to the contaminated pump, was set to
19

20
.

We employed Corollary 2.3 to calculate the
δi
βi

values. �en for

simulation we set βi = 1 for all i and chose h as large as possible

while still meeting Assumption 3. For the initial condition in the

simulations, we began with the Broad Street pump infected and all

the households healthy:

x0 =
[
0 . . . 0 1

]>
. (4)

�is initial condition is shown in Figure 4 (as well as the two consid-

ered graph structures), where the contaminated pump is depicted

as a yellow diamond. As a consequence of these assumptions, our

(a) A(1) from (5) (b) A(2) from (6)

Figure 4: Initial condition of simulations with graph struc-
tures: blue circles indicate healthy households and the yel-
low diamond indicates the infected pump.
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Simulated Data using Learned Spread Parameters

Figure 5: Comparison of Figures 3 and the simulated data
using the learned parameters from the data in Figure 2, em-
ploying Corollary 2.3 and A(1) from (5): Note that the model
does not capture the behavior of the system. �e Euclidean
distance between the two plots is 146.52, and the in�nity
norm is 105.

tuning parameter for adjusting the learned δi parameters, and con-

sequently the spread behavior, was the connectivity matrix A.

For the �rst a�empt, we designed A(1) such that

a
(1)
i j =


1, if ‖zi − zj ‖ < r ,

1, if i = j,

0, otherwise,

(5)

where zi is the location of household i and r was smallest number

such that the graph was connected (shown in Figure 4a). Using the

δi
βi

values derived using A(1), we simulated the system, using (1).

To meet the constraints of Assumption 3, we had to set h = 1

175
.

To create a plot of deaths per day, we multiplied the state of the

system, i.e., the percentage of deaths in each household up to that

point, by the household sizes (assumed to be 20), rounded to the

nearest integer, took the di�erence between the states of each time

step (since the state represents cumulative number of deaths up to

that point), and then summed every three time series points (due to

the small h value), therefore assuming that each time series point

corresponds to a third of a day. Note that this approach does not

capture the behavior of the system very well as it is very di�erent

than the dataset, as depicted in Figure 5. �e Euclidean distance

between the two plots is 146.52, and the in�nity norm is 105.
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Household Sizes

Range in [11] Estimate

0-4 4

5-9 7

10-14 12

15-24 20

24-403 25
∗

Table 1: Estimates for household sizes from Figure 1 in [11]
used in the simulation with A(2): ∗�e workhouse popula-
tion was set to 403.

For the �nal a�empt we changed to heterogeneous household

sizes, using Figure 1 in [11] to approximate these values. We re-

moved all edges except the self loops and the binary directed edges

from the pump to every household with at least one death. �e con-

nection from the pump to the workhouse was set to
1

10
because they

had their own well and only a small fraction of the 403 residents

drank from the Broad Street pump [12]. �erefore

A(2) =



1 0 . . . 0 1

0 1 . . . 0

...

0 0

. . . 0
1

10

0 0 . . . 1

...
0 0 . . . 0 1


. (6)

We found via simulation that as long as the edge weight correspond-

ing to the workhouse was less than or equal to 0.45 then the results

were very similar.

Plo�ing the data from Figure 3 and the simulated data using the

learned parameters from the data in Figure 2, employing Corollary

2.3 and A(2) from (6) on the same plot for comparison in Figure 6

shows that we capture the behavior of the outbreak quite well. �e

Euclidean distance between the two plots is 75.16, and the in�nity

norm is 70. One of the reasons for this discrepancy is due to the

fact that we used the spatial dataset in Figures 1-2, which had only

489 documented deaths, while the cumulative data from Table I in

[12], shown in Figure 3 and the blue line in Figure 6, has a total

of 616 deaths. �e di�erence of 127 has caused the discrepancy.

�e lack of the address information for the additional 127 deaths

is one of the reasons the plots are not identical. However, the

discrepancy is distributed fairly evenly across the whole sample

time. Consequently, we have shown that the model in (1) captures

the behavior of the cholera epidemic from John Snow’s 1854 dataset

very well. Note that the fact that A(2) from (6) performs the best

supports Snow’s hypotheses that the Broad Street pump was the

source of the cholera outbreak, and that cholera does not spread

easily between people or the air, which is known to be true today.

4 CONCLUSION
We have provided necessary and su�cient conditions for unique-

ness of the healthy equilibrium, conditions for the existence of an

endemic state., and a necessary condition for asymptotic stability

of the healthy state. We use a corollary of this analysis to recover

the ratio of the virus spread parameters. Using this corollary we
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Figure 6: Comparison of Figure 3 and the simulated data us-
ing the learned parameters from the data derived using A(2)
in (6): Note that there is a di�erence in the magnitude, but
the general shapes are very similar.

have validated a discrete-time, network-dependent SIS virus spread

model using John Snow’s seminal cholera dataset with very good

results. In future work, would like to �nd other datasets to help

further validate the SIS models. We would like to further study

identi�cation of the spread model accounting for noise in the data.
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