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ABSTRACT

Global spread of emerging epidemics (e.g. pandemic influenza,
SARS, MERS-CoV, Ebola) is increasingly common, associ-
ated with the rapid pace of urbanization and global travel.
Global metapopulation epidemic models built with worldwide
air-transportation network (WAN) data have been one of the
main tools for studying global spread of epidemics. However,
it remains unclear how infectious disease epidemiology and
the network properties of the WAN determine epidemic ar-
rivals for different populations around the world. This work
fills this knowledge gap by developing and validating an an-
alytical framework on the basis of stochastic processes and
network theory, which not only elucidates the dynamics un-
derlying global spread of epidemics but also advances our
capability in nowcasting and forecasting epidemics.
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1 INTRODUCTION

Recent decades, global spread of emerging epidemics is in-
creasingly common, as exemplified by the spread of SARS to
nearly 30 countries in 2003, the spread of influenza A/H1N1
pandemic to more than 100 countries in 2009, the exportation
of Ebola cases from the West Africa to the Nigeria, United
States and United Kingdom in 2014, and recent geographical
expansion of vector-borne diseases such as Dengue and Zika
virus. Such frequent outbreaks of emerging epidemics are
associated with the rapid pace of urbanization and global
travel [5, 9, 14, 17]. In response to the serious situation,
the World Health Organization (WHO) regularly updates
the blueprint list of priority diseases to guide public health
research and preparedness [28].

Since the 1980s, metapopulation epidemic models built
with worldwide air-transportation network (WAN) data have
been one of the main tools for studying global spread of
emerging epidemics [12, 19, 24]. Despite their long history
and widespread use, most studies in this field rely on com-
putationally intensive simulations to predict or forecast the
spatiotemporal transmission of epidemics [17, 19, 24]. How-
ever, one downside of such simulation-based methodology
is that the computational process tends to be a black box –
the underlying dynamics is hard to be elucidated from the
basic principles in infectious disease epidemiology and net-
work theory. In particular, an analytical understanding of the
underlying dynamics has only been partially elucidated in
recent years [4, 10, 23]. To fill this knowledge gap, we develop
a novel analytical framework for characterizing how global
spread of emerging epidemics depends on epidemiological
parameters and the network properties of the WAN.

2 GLOBAL SPREAD SIMULATIONS:
METAPOPULATION EPIDEMIC
MODELS

2.1 Structure of the metapopulation
epidemic models.

Metapopulation epidemic models are often described as a
complex network of populations, in which each population de-
notes a city in the world and populations are interconnected
through the mobility of individuals via the WAN [19, 24].
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Since emerging infectious diseases generally evoke an epi-
demic with relatively fast timescales, we assume that in each
population the epidemic peaks within 300 days after the
establishment of the disease in that population [25]. It indi-
cates that the change in demographics (e.g. births, aging) is
negligible, such that each population has a constant popula-
tion size. Denote population 𝑖 as the epidemic origin with 𝑠𝑖
initial infections seeded at time 0. For any given population
𝑗, the population size is denoted by 𝑁𝑗 , with initial epidemic
growth rate denoted by 𝜆𝑗 . For populations 𝑗 and 𝑘 that are
directly connected, the per capita mobility rate from 𝑗 to
𝑘 is computed by 𝑤𝑗𝑘 = 𝐹𝑗𝑘

⧸︀
𝑁𝑗 , in which 𝐹𝑗𝑘 is the daily

number of passengers travelled by direct flights from 𝑗 to
𝑘. Denote 𝑇𝑛𝑖𝑗 as the time at which population 𝑗 receives its

𝑛th imported infection, such that 𝑇 1
𝑖𝑗 denotes the epidemic

arrival time (EAT) for population 𝑗. Table 1 summarizes
the parameters.

2.1.1 Local epidemic dynamics within each population. The
spread of epidemics within each population is modelled with
frequency-dependent compartmental epidemic models [16], in
which the transmission rate for infectious people to infect oth-
ers can depend on multiple factors including the interpersonal
contact rates, pathogenicity and environmental suitability
[1, 6, 18, 31]. In the main text, we use the standard 𝑆𝐼𝑅
model to describe the local epidemic dynamics within each
population. Appendix A.1 extends to more general epidemic
dynamics modelled by 𝑆𝐸𝑚𝐼𝑛𝑅 models.

Let 𝑆𝑖(𝑡), 𝐼𝑖(𝑡) and 𝑅𝑖(𝑡) be the number of susceptible,
infectious and recovered people in a given population 𝑖 at time
𝑡. Suppose 𝑅0,𝑖 is the basic reproductive number and 𝑇𝑔,𝑖 is
the mean generation time in population 𝑖. Let 𝛽𝑖 = 𝑅0,𝑖

⧸︀
𝑇𝑔,𝑖

be the disease transmission rate and 𝜇𝑖 = 1
⧸︀
𝑇𝑔,𝑖 be the

recovery rate in population 𝑖. The 𝑆𝐼𝑅 model is described
by the following differential equations:

𝑑𝑆𝑖(𝑡)

𝑑𝑡
= −𝛽𝑖

𝑆𝑖(𝑡)

𝑁𝑖
𝐼𝑖(𝑡),

𝑑𝐼𝑖(𝑡)

𝑑𝑡
= 𝛽𝑖

𝑆𝑖(𝑡)

𝑁𝑖
𝐼𝑖(𝑡)− 𝜇𝐼𝑖(𝑡),

𝑑𝑅𝑖(𝑡)

𝑑𝑡
= 𝜇𝐼𝑖(𝑡).

The doubling time 𝑇𝑑,𝑖 for disease prevalence to have a two-

fold increase (i.e. 𝐼𝑖(𝑇𝑑,𝑖) = 2𝑠𝑖) is expressed by log(2)
𝑇𝑔,𝑖

(𝑅0,𝑖−1)
.

2.1.2 Stochastic mobility of individuals between populations.
The spread of epidemics between populations results from
the travel of infected individuals via the WAN. From a given
population 𝑖, each individual travels to a directly connected
population 𝑗 at a small time interval ∆𝑡 with probability
𝑤𝑖𝑗∆𝑡 = 𝐹𝑖𝑗∆𝑡

⧸︀
𝑁𝑖. Suppose population 𝑖 is directly con-

nect to multiple populations in the WAN, the numbers of
susceptible, infectious and recovered travelers that leave pop-
ulation 𝑖 through an interval ∆𝑡, i.e. 𝑋𝑖(𝑡), 𝑌𝑖(𝑡) and 𝑍𝑖(𝑡),
are simulated with the following set of multinomial random

Table 1: Parameters of the two-population model in
which the epidemic origin population 𝑖 is only con-
nected to population 𝑗.

Parameter Definition

𝐼𝑖(𝑡) Disease prevalence (number of infectives)
in population 𝑖 at time 𝑡

𝜆𝑖 Local epidemic growth rate in the origin
population 𝑖

𝑠𝑖 Number of initial infections seeded into the
origin population 𝑖 at time 0

𝑤𝑖𝑗 Daily per capita mobility rate from popu-
lation 𝑖 to 𝑗

𝛼𝑖𝑗 Adjusted mobility rate 𝛼𝑖𝑗 = 𝑠𝑖𝑤𝑖𝑗
𝑇𝑛𝑖𝑗 The 𝑛th arrival time in population 𝑗

variables:

𝑋𝑖(𝑡) =𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙 (⌊𝑆𝑖(𝑡)⌋ , 𝑤𝑖1∆𝑡, ..., 𝑤𝑖𝐺∆𝑡) ,
𝑌𝑖(𝑡) =𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙 (⌊𝐼𝑖(𝑡)⌋ , 𝑤𝑖1∆𝑡, ..., 𝑤𝑖𝐺∆𝑡) ,
𝑍𝑖(𝑡) =𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙 (⌊𝑅𝑖(𝑡)⌋ , 𝑤𝑖1∆𝑡, ..., 𝑤𝑖𝐺∆𝑡) ,

where 𝐺 counts the number of populations in the WAN,
and 𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑛, 𝑝1, ..., 𝑝𝐺) denotes a multinomial ran-
dom variable with 𝑛 trials and probabilities 𝑝1, ..., 𝑝𝐺 [20].
As such, the number of individuals given a specific disease
compartment that that travel from population 𝑖 to 𝑗 per time
interval (e.g. 𝑋𝑖𝑗(𝑡)) corresponds to the 𝑗th component of
the corresponding multinomial random variable (e.g. 𝑋𝑖(𝑡)).

2.2 Data-driven global metapopulation
simulator.

To validate our analytical framework which will be intro-
duced in section 3, we first develop a global metapopula-
tion epidemic simulator, using the algorithm described in
section 2.1. Our simulator contains 2,309 populations and
54,106 direct connections. Its structure is similar to the state-
of-the-art simulator GLEAM [22] (but without the effect
of local commuting which is less important to study the
global spread [3]). To build this simulator, we use the 2015
worldwide flight booking data from the Official Airline Guide
(OAG, https://www.oag.com) and the Gridded Population
of the World Version 4 (GPWv4) dataset from the Columbia
University [7]. The OAG dataset provides all flight book-
ing records from all commercial airlines worldwide during
2015, and the GPWv4 dataset provides the highest resolution
census data from the 2010 round of Population and Hous-
ing Censuses that were collected from hundreds of national
statistics departments and organizations.

Ideally, the metapopulation dynamics described in sec-
tion 2.1 is best implemented with discrete-event simulation
algorithms (e.g. Gillespie algorithm [11]). However, explicitly
simulating every event of individual infection, recovery and
mobility substantially increases the computational burden,
which largely exceeds the power of our high-performance
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Figure 1: Validating the two-population analytics. (a) Illustration of the two-population model, with the epi-
demic origin population 𝑖 only connecting to population 𝑗. Table 1 summarizes the parameters. (b)-(c) Q-Q
plots for the analytical and simulated quantiles of 𝑇 1

𝑖𝑗, 𝑇
5
𝑖𝑗, and 𝑇 10

𝑖𝑗 across 100 epidemic scenarios randomly
sampled from the following parameter space using Latin-hypercube sampling: doubling time 𝑇𝑑,𝑖 and genera-
tion time 𝑇𝑔,𝑖 both between 3 and 30 days, seed size 𝑠𝑖 between 1 and 100. Each of the 100 epidemic scenarios
is coupled with a set of network parameters randomly sampled with mobility rate 𝑤𝑖𝑗 between 10−6 and 10−3

and population size 𝑁𝑖 between 0.1 and 10 million, which are chosen according to the OAG and GPWv4
data [25]. Simulated quantiles for each of the 100 scenarios are compiled using 10,000 stochastic realizations.
In the Q-Q plots, if data points coincide with the diagonal, the arrival times in the analytical framework are
essentially the same as that in the simulation. Data points are colored in blue if the number of exportations
𝑋𝑖𝑗 is 𝑛 or above with probability 1 (i.e. 𝑃 (𝑋𝑖𝑗 ≥ 𝑛) = 1), and yellow otherwise. Insets show the corresponding
histograms of percent error in 𝐸[𝑇𝑛𝑖𝑗 ].

computing resources. To facilitate the stochastic comput-
ing of our global metapopulation epidemic simulator, we
use a discrete-time algorithm in which the intra-population
epidemic dynamics (see section 2.1.1) and inter-population
mobility of travelers (see section 2.1.2) are sequentially simu-
lated for each small time interval ∆𝑡. Throughout this work,
we set ∆𝑡 = 0.05 days, which is sufficiently small to ensure
the accuracy of discrete-time simulations [30].

3 ANALYTICAL FRAMEWORK

We formulate the framework by analytically characteriz-
ing the probability distribution of EATs for all populations
in three metapopulation models with increasingly complex
network structure: (i) the simplest two-population model; (ii)
the shortest-path-tree of the WAN (WAN-SPT hereafter);
and (iii) the whole WAN.

3.1 The two-population model

We start from the two-population model in which the origin
population 𝑖 is only connected to population 𝑗 (see Fig. 1a
and Table 1 for model structure and parameters). This
simple model corresponds to the initial stage of a pandemic
with infections localized at the origin population (i.e. all the
other populations can be merged as a single population that
is unaffected to the disease [2]). Our analytical framework
grounds on the following two key assumptions [10, 23, 25]:

(1) Exportation of infections from population 𝑖 to 𝑗 is
a nonhomogeneous Poisson process (NPP) [20] with
intensity function 𝑤𝑖𝑗𝐼𝑖(𝑡), i.e. the expected number of
infections exported from population 𝑖 to 𝑗 at time 𝑡.

(2) After the epidemic has established in the origin pop-
ulation 𝑖, the first few exportations from population
𝑖 to 𝑗 occur while disease prevalence is still growing
exponentially in the origin 𝑖, i.e. 𝐼𝑖(𝑡) = 𝑠𝑖 exp(𝜆𝑖𝑡).

Under these assumptions, the probability density function
(pdf) of 𝑇𝑛𝑖𝑗 can be expressed in closed-form:

𝑓𝑛(𝑡|𝜆𝑖, 𝛼𝑖𝑗) =
(︂
exp (𝜆𝑖𝑡)− 1

𝜆𝑖

)︂𝑛−1
𝛼𝑖𝑗

𝑛

(𝑛− 1)!
exp

[︂
𝜆𝑖𝑡−

𝛼𝑖𝑗
𝜆𝑖

(exp (𝜆𝑖𝑡)− 1)

]︂
, (1)

where 𝛼𝑖𝑗 = 𝑠𝑖𝑤𝑖𝑗 is termed as adjusted mobility rate.
To validate this two-population analytics, we compare the
analytical and simulated arrival times for a wide range of
epidemic scenarios (e.g. the doubling time and generation

time both between 3 and 30 days), which are eligible to
describe emerging epidemics ranging from pandemic influenza
(with doubling time around 4-5 days) to Ebola (with doubling
time longer than 20 days). Figs. 1(b)-(d) show that Eq. (1)
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Figure 2: Network properties of the hub populations. (a) Histogram shows the distribution of node degree
for all populations in the WAN. The node degree of a given population counts the number of populations
that are directly connected to that population. Inset illustrates the structure of a travel hub, in which the
hub population 𝑖 is connected to multiple populations, one of which is population 𝑗. (b) Illustration of several
major hubs in different continents by reporting their node degree, daily outbound traffic volume, and daily
outbound per capita mobility rate.

accurately characterizes the arrival times 𝑇𝑛𝑖𝑗 for 𝑛 up to
10 (i.e. the 10th exportation). With Eq. (1), we have the
following corollaries:

(1) Exportation of the first 𝑛 infections is essentially an
NPP with intensity function 𝛼𝑖𝑗 exp (𝜆𝑖𝑡).

(2) The cumulative distribution function (cdf) of the 𝑛th
arrival time is given by

𝐹𝑛 (𝑡|𝜆𝑖, 𝛼𝑖𝑗) = Γ
[︁
𝑛,
𝛼𝑖𝑗
𝜆𝑖

(exp (𝜆𝑖𝑡)− 1)
]︁
, (2)

where Γ is the lower incomplete Gamma function.
(3) The expected EAT is given by

𝐸
[︀
𝑇 1
𝑖𝑗

]︀
=

1

𝜆𝑖
exp

(︂
𝛼𝑖𝑗
𝜆𝑖

)︂
E1

(︂
𝛼𝑖𝑗
𝜆𝑖

)︂
, (3)

where E𝑚 (𝑥) = 𝑥𝑚−1
∫︀∞
𝑥

[︁
exp(−𝑢)
𝑢𝑚

]︁
𝑑𝑢 is the exponen-

tial integral.
(4) If 𝛼𝑖𝑗 << 𝜆𝑖 and 𝛾 denotes the Euler constant, the

expected EAT can be approximated as

𝐸
[︀
𝑇 1
𝑖𝑗

]︀
≈ 1

𝜆𝑖

[︂
ln

(︂
𝜆𝑖
𝛼𝑖𝑗

)︂
− 𝛾

]︂
, (4)

which is congruent with the EAT statistic in Gautreau
et al. for estimating the order of epidemic arrival across
different populations [10].

(5) The expected time of the 𝑛th arrival is given by

𝐸[𝑇𝑛𝑖𝑗 ] =
1

𝜆𝑖
exp

(︂
𝛼𝑖𝑗
𝜆𝑖

)︂ 𝑛∑︁
𝑚=1

E𝑚

(︂
𝛼𝑖𝑗
𝜆𝑖

)︂
. (5)

(6) For any positive integers 𝑚 and 𝑛 (𝑚 < 𝑛), the pdf of
𝑇𝑛𝑖𝑗 - 𝑇𝑚𝑖𝑗 conditional on 𝑇𝑚𝑖𝑗 is simply

𝑓𝑛−𝑚
(︀
𝑡|𝜆𝑖, 𝛼𝑖𝑗 exp

(︀
𝜆𝑖𝑇

𝑚
𝑖𝑗

)︀)︀
(6)

which corresponds to the time of the (𝑛 − 𝑚)th ex-
portation for an epidemic with seed size 𝑠𝑖 exp

(︀
𝜆𝑖𝑇

𝑚
𝑖𝑗

)︀
.

Using this relation recursively, we deduce that the joint
pdf of 𝑇 1

𝑖𝑗 = 𝑡1, ..., 𝑇
𝑛
𝑖𝑗 = 𝑡𝑛 is simply∏︁𝑛

𝑚=1
𝑓1 (𝑡𝑚|𝜆𝑖, 𝛼𝑖𝑗 exp (𝜆𝑖𝑡𝑚−1)) (7)

for all 0 = 𝑡0 < 𝑡1 < 𝑡2 < ... < 𝑡𝑛−1 < 𝑡𝑛.
(7) The expected time of the (𝑛− 1)th exportation given

an epidemic that starts at time 𝑇 1
𝑖𝑗 with seed size

𝑠𝑖 exp
(︀
𝜆𝑖𝑇

1
𝑖𝑗

)︀
is given by

𝐸
[︀
𝑇𝑛𝑖𝑗 |𝑇 1

𝑖𝑗

]︀
= 𝑇 1

𝑖𝑗+
1

𝜆𝑖
exp

(︃
𝛼𝑖𝑗 exp

(︀
𝜆𝑖𝑇

1
𝑖𝑗

)︀
𝜆𝑖

)︃
𝑛−1∑︁
𝑚=1

E𝑚

(︃
𝛼𝑖𝑗 exp

(︀
𝜆𝑖𝑇

1
𝑖𝑗

)︀
𝜆𝑖

)︃
(8)

These corollaries are essential for extending our framework
to the WAN-SPT and WAN analysis (see the following two
sections).

3.2 The shortest-path tree of the WAN

The WAN-SPT is the dominant sub-network (or backbone)
of the WAN, in which each downstream population connects
to the epidemic origin via only one path. Brockmann et
al. [4, 15] suggested that the epidemic spreads from the origin
population to the other populations in the WAN through the
WAN-SPT, such that global spread of epidemics through the
WAN is primarily driven by the WAN-SPT. We will show that
for each population 𝑘 in the WAN-SPT, the 𝑛th arrival time
𝑇𝑛𝑖𝑘 can be accurately characterized by the two-population
analytics of Eq. (1), where the local epidemic growth rate
and adjusted mobility rate are specifically parameterized to
account for the hub effect (see section 3.2.1) and continuous
seeding effect (see section 3.2.2).
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Figure 3: Effect of continuous seeding. (a) Illus-
tration of the epidemic arrival process through an
acyclic path that connects the epidemic origin 𝑖 to
population 𝑘 via population 𝑗 (i.e. 𝜓 : 𝑖→ 𝑗 → 𝑘). (b)
In this example, the epidemic arrives at population
𝑘 after population 𝑗 has imported three infections
from the epidemic origin, i.e. 𝑇 3

𝑖𝑗 < 𝑇 1
𝑖𝑘 < 𝑇 4

𝑖𝑗. In the
absence of continuous seeding adjustment, infection
trees spawned by the second and subsequent impor-
tations in population 𝑗 are ignored [10, 25].

3.2.1 Hub effect. Travel hubs such as Hong Kong, London
and Paris have direct flights to multiple populations in the
WAN (i.e. their node degree > 1, see Fig. 2 for illustra-
tions). Given a hub population 𝑖, the growth of local disease
prevalence 𝐼𝑖(𝑡) can be substantially decreased if a significant
proportion of infections travel outward as the epidemic un-
folds. To extend our framework to deal with hub populations,
we account for the reduction in local disease prevalence by
wiping off the hub-effect from local epidemic growth rate 𝜆𝑖.

Suppose a hub population 𝑖 is directly connected to two or
more populations, one of which is population 𝑗 (see Fig. 2(a)).
From the perspective of case arrival process for population 𝑗,
disease prevalence in population 𝑖 grows exponentially at rate
𝜆𝑖𝑗 = 𝜆𝑖 −

∑︀
𝑘 ̸=𝑗 𝑤𝑖𝑘. Therefore, the pdf of the 𝑛th arrival

time for population 𝑗 can be estimated with hub-adjusted
two-population analytics 𝑓𝑛(𝑡|𝜆𝑖𝑗 , 𝛼𝑖𝑗), in which infections
are exported from population 𝑖 to 𝑗 at a rate 𝑤𝑖𝑗𝐼𝑖(𝑡) and
disease prevalence in hub population 𝑖 grows exponentially
at the effective growth rate 𝜆𝑖𝑗 . Using the hub structure of
Hong Kong as an example, Fig. 4(a) show that hub-adjusted
two-population analytics accurately characterizes the proba-
bility distribution of 𝑇𝑛𝑖𝑗 for all populations that are directly
connected to Hong Kong.

3.2.2 Continuous seeding. Unlike the epidemic origin pop-
ulation which has a single seeding event at time 0, all the
other populations in the WAN-SPT can be continuously
seeded by infections coming from their upstream populations
(illustrated in Fig. 3), as exemplified by recent multiple case
importations of Zika Virus in Florida that come from the
Caribbean [13].

Let 𝐷𝑐 be the set of populations that are 𝑐 degrees of sep-
aration from the epidemic origin in the WAN-SPT. Suppose
a population 𝑘 in 𝐷2 is connected to the epidemic origin
via population 𝑗 along the path 𝜓 : 𝑖 → 𝑗 → 𝑘. After the
epidemic has arrived at population 𝑗 at time 𝑇 1

𝑖𝑗 , population
𝑖 continues to export infections to population 𝑗 before the
epidemic arrives at population 𝑘 at time 𝑇 1

𝑖𝑘 (illustrated in
Fig. 3). According to the two-population model, each im-
ported infection in population 𝑗 (arriving at times 𝑇 1

𝑖𝑗 , 𝑇
2
𝑖𝑗 , ...)

spawns an infection tree that grows exponentially at the hub-
adjusted rate 𝜆𝑗𝑘. Therefore, the overall disease prevalence
in population 𝑗, namely 𝐼𝑗(𝑡), is simply the sum of disease
prevalence for all these infection trees:

𝐼𝑗 (𝑡) =
∑︁∞

𝑚=1
I
{︀
𝑡 > 𝑇𝑚𝑖𝑗

}︀
exp

(︀
𝜆𝑗𝑘

(︀
𝑡− 𝑇𝑚𝑖𝑗

)︀)︀
where 𝑇𝑚𝑖𝑗 is the 𝑚th arrival time in population 𝑗, and I {·}
is the indicator function. Based on the two-population model,
the exportation of infections from population 𝑗 to 𝑘 is an NPP
with intensity function 𝑤𝑗𝑘𝐼𝑗(𝑡), which is itself a stochastic
process because of its dependence on the random variables
𝑇 1
𝑖𝑗 , 𝑇

2
𝑖𝑗 , .... As such, conditional on 𝐼𝑗(𝑡) and hence 𝑇 1

𝑖𝑗 , 𝑇
2
𝑖𝑗 , ...,

the pdf of 𝑇𝑛𝑖𝑘 is

𝑔𝑛 (𝑡|𝑤𝑗𝑘𝐼𝑗) = 𝑓𝑃𝑜𝑖𝑠𝑠𝑜𝑛

(︂
𝑛− 1, 𝑤𝑗𝑘

∫︁ 𝑡

0

𝐼𝑗 (𝑢) 𝑑𝑢

)︂
𝑤𝑗𝑘𝐼𝑗 (𝑢)

for 𝑛 = 1, 2.... The unconditional pdf of 𝑇𝑛𝑖𝑘 is thus

𝐸𝑇1
𝑖𝑗 ,𝑇

2
𝑖𝑗 ,...

[𝑔𝑛 (𝑡|𝑤𝑗𝑘𝐼𝑗)]

which integrates over the joint pdf of
(︀
𝑇 1
𝑖𝑗 = 𝑡1, 𝑇

2
𝑖𝑗 = 𝑡2, ...

)︀
.

We conjecture that this highly complex stochastic process
can be substantially simplified with little loss of accuracy
by using the following assumption: Conditional on 𝑇 1

𝑖𝑗 (i.e.

the EAT for population 𝑗), 𝑇𝑚𝑖𝑗 ≈ 𝐸
[︀
𝑇𝑚𝑖𝑗 |𝑇 1

𝑖𝑗

]︀
for all 𝑚 > 1

(see Eq. 8). Therefore, conditional on 𝑇 1
𝑖𝑗 , we approximate

𝐼𝑗(𝑡) with the following certainty equivalent approximation
(CEA):

𝐼𝐶𝐸𝐴𝑗 (𝑡) =
∑︁∞

𝑚=1
I
{︀
𝑡 > 𝐸

[︀
𝑇𝑚𝑖𝑗 |𝑇 1

𝑖𝑗

]︀}︀
exp

(︁
𝜆𝑗𝑘

(︀
𝑡− 𝐸

[︀
𝑇𝑚𝑖𝑗 |𝑇 1

𝑖𝑗

]︀)︀)︁
= exp

(︁
𝜆𝑗𝑘

(︀
𝑡− 𝑇 1

𝑖𝑗

)︀ )︁∑︁∞

𝑚=1
I
{︀
𝑡 > 𝑇 1

𝑖𝑗 +∆𝑇𝑚𝑖𝑗
}︀
exp

(︁
− 𝜆𝑗𝑘∆𝑇

𝑚
𝑖𝑗

)︁
where

∆𝑇𝑚𝑖𝑗 = 𝐸
[︀
𝑇𝑚𝑖𝑗 |𝑇 1

𝑖𝑗

]︀
− 𝑇 1

𝑖𝑗

=
1

𝜆𝑖𝑗
exp

(︃
𝛼𝑖𝑗 exp

(︀
𝜆𝑖𝑗𝑇

1
𝑖𝑗

)︀
𝜆𝑖𝑗

)︃
𝑚−1∑︁
𝑞=1

Eq

(︃
𝛼ij exp

(︀
𝜆ijT

1
ij

)︀
𝜆ij

)︃
(see Eq. (8)). The resulting unconditional pdf of 𝑇𝑛𝑖𝑘 is simply

𝐸𝑇1
𝑖𝑗

[︁
𝑔𝑛
(︀
𝑡|𝑤𝑗𝑘𝐼𝐶𝐸𝐴𝑗

)︀]︁
where the pdf of 𝑇 1

𝑖𝑗 is 𝑓1 (·|𝜆𝑖𝑗 , 𝛼𝑖𝑗)
(see Eq. (1)).
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Figure 4: Validating the analytical framework for the WAN-SPT with Hong Kong as the epidemic origin
(WAN-SPT-HK). (a)-(c) Q-Q plots for the analytical and simulated quantiles of EATs for all populations in the
WAN-SPT-HK across the 100 epidemic scenarios used in Fig. 1. Insets show the corresponding histograms of
percent error in expected EAT. (a) EATs for all populations in 𝐷1 before (red) and after (blue) adjusting for the
hub-effect. (b) EATs for all populations in 𝐷2 before (red) and after (blue) adjusting for the continuous seeding
and path reduction, in which the hub-effect has been adjusted for the epidemic origin and all populations in
𝐷1. (c) EATs for the remaining populations in 𝐷3 and 𝐷4 after adjusting for the hub-effect, continuous seeding
and path reduction.

Furthermore, this pdf can in turn be well approximated
with 𝑓𝑛 (𝑡|𝜆𝜓, 𝛼𝜓) where 𝜆𝜓, 𝛼𝜓 are obtained by minimizing
the relative entropy [21, 25] for 𝑛 = 1 (i.e. the first expor-
tation). This indicates that the spread of epidemics from
the origin to any population in 𝐷2 can be regarded as a
two-population model, in which the adjusted mobility rate
is 𝛼𝜓 and the epidemic in the origin grows exponentially at
rate 𝜆𝜓. We term this procedure path reduction.

Next, consider a longer path 𝜙 : 𝑖 → 𝑗 → 𝑘 → 𝑚, i.e.
𝑚 ∈ 𝐷3. Using path reduction, we first approximate the
entire path 𝜙 with 𝜙′ : 𝑖 → 𝑘 → 𝑚 where the adjusted
mobility rate and adjusted epidemic growth rate in the origin
for the connection 𝑖→ 𝑘 are 𝜆𝜓, 𝛼𝜓, respectively. The arrival
times of infections for population 𝑚 ∈ 𝐷3 (i.e. 𝑇𝑛𝑖𝑚, 𝑛 =
1, 2, ...) can be estimated using the methods that we have
developed for 𝐷2 populations. Fig. 4 show that recursively
using adjustments for the hub-effect and continuous seeding
accurately characterizes the arrival times for all populations
in the WAN-SPT.

3.3 The whole WAN

The accuracy of our WAN-SPT analysis provides a key insight:
for each acyclic path 𝜓 that connects any given population
𝑘 to the epidemic origin, the epidemic arrival process for
population 𝑘 along this path is well approximated as an NPP
with intensity function 𝛼𝜓 exp (𝜆𝜓𝑡). In the whole WAN,
each population might be connected to the epidemic origin
via multiple paths, some of which might be intersected and
therefore dependent (see Fig. 5(a)). We conjecture that the
dependence among such paths is sufficiently weak, such that
the overall epidemic arrival process for any population 𝑘 in

the WAN can be characterized with the following method:
(i) decomposing all paths that connects the epidemic origin
to population 𝑘 into a set Ψ𝑖𝑘 of independent acyclic paths;
and then (ii) approximating the EAT for population 𝑘 by
the superposition of the NPPs [20] that correspond to these
pseudo-independent paths. Mathematically, the epidemic
arrival process for population 𝑘 is well approximated by an
NPP with intensity function

∑︀
𝜓∈Ψ𝑖𝑘

𝛼𝜓 exp (𝜆𝜓𝑡). Fig. 5

validates that our analytical framework (i.e. synthesis of
the two-population analytics, adjustment for the hub-effect,
adjustment for continuous seeding, path reduction and path
superposition) is accurate for characterizing the EATs for
almost all populations in the WAN. The results are robust
for all tested 100 epidemic scenarios.

4 CONCLUSIONS

In summary, we have developed an analytical framework that
grounds on the basic principles in infectious disease epidemi-
ology and network theory for understanding the dynamics
underlying global spread of emerging epidemics. Not only
can our framework provides analytical and computational
advancement for forecasting EATs for all populations in the
WAN, but it also elucidates the dependence of EATs on
the epidemiologic parameters (growth rate and seed size)
and the network properties of the WAN (air traffic volume
and connectivity). Because our framework provides closed-
form probability distributions (Eq. (1)), it can also support
likelihood-based inference of key epidemiologic parameters
from surveillance data on local disease incidence and global
case exportations [25]. Ongoing studies deserve to extend the
framework to account for more complex factors including the
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Figure 5: Validating the analytical framework for the
WAN. The epidemic origin is Hong Kong as in Fig. 4.
(a) Q-Q plots for the analytical and simulated quan-
tiles of EATs for all populations in the WAN. Ana-
lytical EATs are computed using the NPP superposi-
tion as described in the section 3.3, while simulated
EATs are generated from our global metapopulation
simulator as described in the section 2.2. Data points
are colored in blue for 𝐷1 populations, yellow for 𝐷2

populations, and red for 𝐷3 and 𝐷4 populations. (b)
Density of the data points in (a) to show that nearly
all the 230,800 Q-Q plots coincide with the diagonal,
which demonstrates the congruence between analyt-
ical and simulated EATs.

stochasticity of intra-population transmission dynamics [29]
and seasonal travel patterns [8, 27].

A APPENDICES

A.1 𝑆𝐸𝑚𝐼𝑛𝑅 model for epidemic spreading
within each population

In the main text, we build the analytical framework using
the SIR model within each population. Here we extend the
theory to 𝑆𝐸𝑚𝐼𝑛𝑅 models [26] in which:

(1) The duration of latency is gamma distributed with
mean 𝐷𝐸 and 𝑚 subclasses (i.e. with shape 𝑚 and
rate 𝑏𝐸 = 𝑚/𝐷𝐸 .

(2) The duration of infectiousness is gamma distributed
with mean 𝐷𝐼 and 𝑛 subclasses (i.e. with shape 𝑛 and
rate 𝑏𝐼 = 𝑛/𝐷𝐼 .

For any given population, let 𝑆(𝑡), 𝑅(𝑡) be the number
of susceptible and recovered individuals, respectively, 𝐸𝑖(𝑡)
the number of individuals in the 𝑖th latent subclass, and
𝐼𝑗(𝑡) the number of individuals in the 𝑗th infectious subclass.
The 𝑆𝐸𝑚𝐼𝑛𝑅 model is described by the following differential
equations:

𝑑𝑆(𝑡)

𝑑𝑡
= −𝛽 𝑆(𝑡)

𝑁

𝑛∑︁
𝑗=1

𝐼𝑗(𝑡)

𝑑𝐸1(𝑡)

𝑑𝑡
= 𝛽

𝑆(𝑡)

𝑁

𝑛∑︁
𝑗=1

𝐼𝑗(𝑡)− 𝑏𝐸𝐸1(𝑡)

𝑑𝐸𝑖(𝑡)

𝑑𝑡
= 𝑏𝐸 (𝐸𝑖−1(𝑡)− 𝐸𝑖(𝑡)) for 𝑖 = 2, ...,𝑚

𝑑𝐼1(𝑡)

𝑑𝑡
= 𝑏𝐸𝐸𝑚(𝑡)− 𝑏𝐼𝐼1(𝑡)

𝑑𝐼𝑗(𝑡)

𝑑𝑡
= 𝑏𝐼 (𝐼𝑗−1(𝑡)− 𝐼𝑗(𝑡)) for 𝑗 = 2, ..., 𝑛

𝑑𝑅(𝑡)

𝑑𝑡
= 𝑏𝐼𝐼𝑗(𝑡).

During the early stage of the epidemic (such that 𝑆(𝑡) ≈
𝑁), the prevalence of latent and infectious people both grows
exponentially at rate 𝜆, which is the solution to the following
equation [26]:

𝜆

(︂
𝜆+

𝑚

𝐷𝐸

)︂𝑚
− 𝛽

(︂
𝑚

𝐷𝐸

)︂𝑚(︃
1−

(︂
𝜆𝐷𝐼
𝑛

+ 1

)︂−𝑛
)︃

= 0

That is, the prevalence of latent and infectious individuals
are well approximated by �̄� exp (𝜆𝑡) and 𝐼 exp (𝜆𝑡), respec-
tively, where �̄� and 𝐼 depend on the initial conditions and
parameters of the differential equation systems (the analytical
expressions of �̄� and 𝐼 are obtained by solving the linearized
system with 𝑆(𝑡) = 𝑁). If a proportion 1 − 𝑝𝐸 and 1 − 𝑝𝐼
of the latent and infectious people refrain from air travel
because of their infections, the seed size 𝑠0 in the main text
is simply 𝑝𝐸�̄� + 𝑝𝐼𝐼.
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