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Preface

The devastating impact of the currently unfolding global COVID19 pandemic and those of the
Zika, SARS, MERS, and Ebola outbreaks over the past decade has sharply illustrated our
enormous vulnerability to emerging infectious diseases. We are living in an era during which
human activity is the dominant influence on climate and the environment. With escalating
globalization, urbanization, and ecological pressures, the threat of a global pandemic has
become more pronounced. There is an urgent need to develop sound theoretical principles
and transformative computational approaches that will allow us to address the escalating
threat of current and future pandemics. Data mining and Knowledge discovery have an
important role to play in this regard. Different aspects of infectious disease modeling, analysis
and control have traditionally been studied within the confines of individual disciplines, such
as mathematical epidemiology and public health, and data mining and machine learning.
Coupled with increasing data generation across multiple domains (like electronic medical
records and social media), there is a clear need for analyzing them to inform public health
policies and outcomes. Recent advances in disease surveillance and forecasting, and
initiatives such as the CDC Flu Challenge, have brought these disciplines closer--public health
practitioners seek to use novel datasets and techniques whereas researchers from data
mining and machine learning develop novel tools for solving many fundamental problems in
the public health policy planning process. We believe the next stage of advances will result
from closer collaborations between these two communities---the main objective of
epiDAMIK.

COVID-19 pandemic has highlighted, like never before, the importance of integrating large
datasets spanning various domains such as infectious disease surveillance, human mobility,
sociodemographic factors and public policy. It has also revealed the need for novel methods
that can work with streaming, noisy datasets to support pandemic response in real-time.

The main program of epiDAMIK’20 consists of seven papers that cover various aspects of data
mining and public health. In addition there were four keynotes. Five were presented orally,
and six additional papers presented during the interactive poster session. These papers were
selected after a thorough reviewing process. We sincerely thank the authors of the
submissions and the attendees of the workshop. We also wish to thank the members of our
program committee for their help in selecting a set of high-quality papers. Furthermore, we
are very grateful to Milind Tambe, Amy Wesolowski, Adam Sadilek, and Sara del Valle for
engaging keynote presentations.

B. Aditya Prakash

Anil Vullikanti

Shweta Bansal

Adam Sadilek

Mauricio Santillana
Srinivasan Venkatramanan
Bijaya Adhikari

August 2020
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Invited Talk

Al for Public Health: Learning and Planning in the

Data-to-Deployment Pipeline
Milind Tambe
Gordon McKay Professor of Computer Science, Harvard University
Director “Al for Social Good”, Google Research India
milindtambe@google.com

Abstract:

With the maturing of Al and multiagent systems research, we have a tremendous opportunity
to direct these advances towards addressing complex societal problems. In this talk, we focus
on public health challenges such as HIV prevention and TB prevention, and present research
advances in multiagent systems to address one key cross-cutting challenge: how to effectively
deploy our limited intervention resources in these problem domains. We present results from
large-scale studies and deployments, as well as lessons learned that we hope are of use to
researchers who are interested in Al for Social Impact. Achieving social impact in these
domains often requires methodological advances; we will highlight key research advances in
topics such as influence maximization in social networks, multi-armed bandits and agent-
based modeling for addressing challenges in public health. In pushing this research agenda,
we believe Al can indeed play an important role in fighting social injustice and improving
society.

Bio:

Milind Tambe is Gordon McKay Professor of Computer Science and Director of Center for
Research in Computation and Society at Harvard University; concurrently, he is also Director
“Al for Social Good” at Google Research India. He is a recipient of the IJCAI John McCarthy
Award, ACM/SIGAI Autonomous Agents Research Award from AAMAS, AAAI Robert S
Engelmore Memorial Lecture award, INFORMS Wagner prize, Rist Prize of the Military
Operations Research Society, the Christopher Columbus Fellowship Foundation Homeland
security award, AAMAS influential paper award, best paper awards at conferences including
AAMAS, IJCAI, IVA. He has also received meritorious commendations and letters of
appreciation from the US Coast Guard, Los Angeles Airport, and the US Federal Air Marshals
Service. Prof. Tambe is a fellow of AAAl and ACM.



Invited Talk

Use of novel data sets to understand the spatial
spread of infectious diseases and allocation of

public health interventions

Amy Wesolowski
Assistant Professor, Epidemiology
Johns Hopkins Bloomberg School of Public Health
awesolowski@jhu.edu

Abstract:

Increasingly novel data sets are being used to inform our understanding of infectious disease
epidemiology and the spatial spread of these pathogens. One clear example has been the use
of data to quantify and model human travel patterns that has broad implications for
predicting the spatial spread and populations at risk for disease outbreaks. Here, we will
review the use of these types of data to understand human behavior and the implications for
control programs covering a wide range of applications including malaria control and
elimination, dengue surveillance and preparedness, and SARS-CoV-2 transmission models.
We will highlight how and where these data may be integrated in public health and used to
better inform models of disease transmission.

Bio:

Amy Wesolowski is an Assistant Professor in Epidemiology at the Johns Hopkins Bloomberg
School of Public Health. She received her PhD from Carnegie Mellon University in Engineering
and Public Policy. She then completed postdoctoral fellowships at Harvard TH Chan School
of Public Health in the Center for Communicable Disease Dynamics and Princeton University
in the Department of Ecology and Evolutionary Biology. Her group's research focuses on
using novel data sets, particularly mobile phone data, to quantify human behavior and use
this information to inform our understanding of infectious disease epidemiology. They work
on a wide range of pathogens including malaria, dengue, measles, and rubella. This research
is primarily focused in low and middle-income settings including a number of field projects
in Kenya, Madagascar, Zambia, and Sri Lanka.



Invited Talk

Machine-Learned Epidemiology

Adam Sadilek
Senior Engineer, Google Research
sadilekadam@google.com

Abstract:

Work in computational epidemiology to date has been limited by coarseness and lack of
timeliness of observational data. Most existing models are based on hand-curated statistics
that are often delayed, expensive to collect, and cover only limited jurisdictions. Our goal is
to lift the state of the art in epidemiology to a new qualitative state, where real-time health
predictions become feasible and actionable. We do this at scale by applying federated
machine learning and secure aggregation to online data to infer what likely contributed to
the contagion. In this talk, [ will sample current projects at Google focusing on privacy-first
epidemiology research and recent publications.

[1] nature.com/articles/s41467-019-12809-y

[2] nature.com/articles/s41746-018-0045-1

[3] science.sciencemag.org/content/sci/early/2020/07 /16 /science.abc5096
[4] nature.com/articles/s41562-020-0875-0

Bio:

Adam Sadilek focuses on large-scale machine learning applied to health and ecology at Google
Research. Before that, he worked on speech understanding at Google[x]. Prior to joining
Google, Adam was a co-founder of Fount.in, a machine learning startup providing automated
text understanding.



Invited Talk

Real-time Data Fusion to Guide Disease

Forecasting Models
Sara del Valle
Deputy Group leader, Information Systems and Modeling Group
Los Alamos National Laboratory
sdelvall@lanl.gov

Abstract:

Globalization has created complex problems that can no longer be adequately understood
and mitigated using traditional data analysis techniques and data sources. As such, there is a
need for the integration of nontraditional data streams and approaches such as social media
and machine learning to address these new challenges. In this talk, I will discuss how our
team is applying approaches from the weather forecasting community including data
collection, assimilating heterogeneous data streams into models, and quantifying uncertainty
to forecast infectious diseases. In addition, I will demonstrate that although epidemic
forecasting is still in its infancy, it's a growing field with great potential and mathematical
modeling will play a key role in making this happen.

Bio:

Sara Del Valle is a scientist and Deputy Group leader for the Information Systems and
Modeling Group at Los Alamos National Laboratory, where she works on the development of
mathematical and computational models for infectious diseases. Her research focuses on
using mathematical and computational models to improve our understanding of human
behavior and the spread of infectious diseases. She has developed epidemiological models for
many diseases including smallpox, anthrax, HIV, pertussis, MERS-CoV, malaria, dengue,
influenza, Ebola, zika, chikungunya, and COVID-19. She has also worked on investigating the
role of Internet data streams on monitoring emergent behavior during outbreaks and
forecasting infectious diseases. Most recently, her team is investigating the role of large-scale
data analytics such as satellite imagery, Internet data, climate, and census data on detecting,
monitoring, and forecasting infectious diseases.
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Dept of Computer Science
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Dept of Computer Science
The University of Iowa

*For the CDC MInD-Healthcare Group

ABSTRACT

Asymptomatic carriers of an infection make it more challenging
to understand the characteristics of that infection (e.g., parameters

such as Rp) and to design, implement, and evaluate interventions.

Asymptomatic carriers are usually not tested, which also means
we do not have “ground truth” labels for these cases in our data. In
this paper, we propose a 2-stage classification model for inferring
asymptomatic carriers of Clostridioides difficile (C. diff) infections
(CDI), a common healthcare-associated infection that causes almost
half a million illnesses in the US each year. Guided by hypotheses
derived from literature on risk factors for C. diff carriers, we design
a Stage 1 model for detecting asymptomatic C. diff carriers that is
trained on symptomatic CDI cases. We evaluate the performance
of this Stage 1 model by designing a Stage 2 model to predict CDI
incidence that uses among its inputs exposure to asymptomatic
C. diff carriers inferred by our Stage 1 model. Results from this
evaluation lead to two findings. First, our results show that the
best performing Stage 1 model depends on all of the standard risk
factors for CDI except for high-risk antibiotics. This is an intriguing
finding that highlights an important difference between the risk
profile of CDI patients and C. diff carriers. Second, we show that
adding exposure to asymptomatic cases as an input to the Stage 2
CDI classification model leads to better performance. This result
implies that asymptomatic C. diff carriers do in fact contribute
to CDI spread, confirming an important conjecture from the CDI
literature.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
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1 INTRODUCTION

For many infections, asymptomatic cases present a major obstacle
to understanding precisely how the infection is spread, and they
make implementing effective interventions that much more chal-
lenging. Indeed, asymptomatic cases are widely believed to play
a substantial role in the spread of COVID-19 [3, 21] and asymp-
tomatic transmission of SARS-CoV-2 has been called the “Achilles’
heel” of control strategies for COVID-19 [13].

The focus of this paper is on inferring asymptomatic cases of
a common healthcare-associated infection (HAI) known as C. diff
infection, or CDI. An HAI is an infection that a patient acquires in
a healthcare facility while being treated for another condition. At
any given time, 1 in 25 patients in the US has an HAI [23]. CDI is
caused by the bacterium Clostridioides difficile, and is characterized
by diarrhea and inflammation of the colon: there are almost half
a million cases of CDI in the US each year [12]. CDI, and HAIs
in general, pose a major challenge to healthcare systems world-
wide, especially because some of these infections are becoming
resistant to antibiotics, the primary treatment used to address these
infections.

There is evidence that a substantial fraction of patients admitted
to a healthcare facility are asymptomatic C. diff carriers [18, 19].
One particular study [19] found that up to 10% of patients admitted
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to a tertiary hospital in Minnesota during March-April 2009 were
in fact asymptomatic C. diff carriers. Yet the role of asymptomatic
cases in the spread of CDI within healthcare facilities is largely
unexplored [1], though there is accumulating indirect evidence that
this role is substantial. For example, another study [10] found that
45% of CDI cases originated from sources other than symptomatic
cases, suggesting a significant role for asymptomatic persons; a
still more recent study [29], found that only 17% of CDI cases in a
hospital ward had direct contact with other symptomatic patients,
also suggesting that the pathogen had been acquired from other,
presumably asymptomatic, sources.

Understanding the role of asymptomatic C. diff carriers is a
critical element in designing effective interventions. Our paper
presents a data-driven approach to identifying and understanding
the role of asymptomatic C. diff carriers on the diffusion of CDI in
a healthcare setting.

1.1 Results and Approach

Guided by literature on risk factors for being an asymptomatic
C. diff carrier [16], we evaluate multiple data-driven models for
inferring if a patient is an asymptomatic C. diff carrier. Our evalua-
tion is based on retrospective data, for the time period 2007-2011,
from the University of Iowa Hospitals and Clinics (UIHC), contain-
ing about 154K patient visits and associated demographic fields
and rich spatio-temporal information on procedures, antibiotics,
comorbidities, within-hospital transfers, etc. It is known that risk
factors for (symptomatic) CDI include age, length of hospital stay,
recent prior hospital admission, use of certain antibiotics consid-
ered high-risk for CDI, use of proton pump inhibitors, and severity
of other comorbidities [9]. However, much less is known about the
risk factors for asymptomatic C. diff carriage. Our first finding is
that a predictive model for inferring asymptomatic C. diff carriage
that uses all the (above mentioned) features that are risk factors for
symptomatic CDI, except for high-risk antibiotics has good perfor-
mance, relative to other models we consider. Specifically, excluding
antibiotics as a risk factor seems to lead to a model with better
performance than the model obtained by including antibiotics as
a risk factor. This is an intriguing data-driven finding that is con-
sistent with [16], where antibiotic use is not listed as a risk factor
for asymptomatic C. diff carriage. However, as mentioned earlier,
there is a lot unknown about risk factors for asymptomatic C. diff
carriage and in other literature (e.g., [8]) the Cephalosporin class of
antibiotics were found to be a risk factor for asymptomatic C. diff
carriage.

The key difficulty in training and testing a predictive model for
asymptomatic C. diff carriage is that we do not have any “ground
truth” data, i.e., we have no labels identifying certain patients as
being asymptomatic C. diff carriers. Our data — like most large-
scale inpatient data from hospitals — only contain information on
patients who tested positive for CDI, and these tests are invariably
administered to patients who show symptoms. We overcome this
missing label problem in two ways. First, we consider two alterna-
tive hypotheses on the relationship between CDI and asymptomatic
C. diff carriage and use these hypotheses to generate a number of
different prediction models for asymptomatic C. diff carriage. Sec-
ond, we test out models indirectly by viewing these models for
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predicting asymptomatic C. diff carriage as constituting the first
stage in a 2-stage model. We design the Stage 2 model for predicting
symptomatic CDI cases. Inspired by the approach in [7, 9, 30], we
use measures of exposure to asymptomatic C. diff carriers identified
by the Stage 1 model as features in the Stage 2 model. Our second
finding is that a model that includes exposure to asymptomatic
C. diff carriers outperforms models that don’t include this exposure.
This finding simultaneously shows two things. First, it reveals the
predictive power of our Stage 1 models and identifies Stage 1 mod-
els that outperform other models (e.g., the Stage 1 model that uses
all CDI risk factors except for antibiotics). Second, it shows that
exposure to asymptomatic C. diff carriers is a salient risk factor for
CDJI, something that has been conjectured widely in CDI literature
[10, 29].

Additionally, we also investigate spatio-temporal clustering of
the cases inferred to be C. diff carriers by our model. In prior work
[27], we have shown that CDI cases at the UIHC exhibit spatio-
temporal clustering. Using similar statistical tests, we show here
that the observed CDI cases along with the inferred asymptomatic
C. diff carriers also exhibit spatio-temporal clustering. This finding
provides additional indirect evidence that in-hospital exposure to
asymptomatic C. diff carriers may be playing a role in the spread
of CDI in the hospital.

1.2 Other Related Work

Besides the papers cited earlier, there are two computational ap-
proaches to the problem of inferring asymptomatic cases, that are
worth mentioning here. Makar et al. [20] define a generative prob-
abilistic model for problem of inferring asymptomatic cases and
their impact on other agents via exposure. Their main contribution
is a computational method for solving for the parameters of the
model. A different strand of research uses [28, 31, 32] the Steiner
tree problem as a model for the problem where some nodes in a
contact network are observably infected (i.e., symptomatic) and the
infection status of other nodes is latent.

2 THE STAGE 1 MODEL: INFERRING
ASYMPTOMATIC C. DIFF CARRIERS

2.1 The UIHC DataSet

The data used in this paper consist of anonymized electronic medi-
cal records (EMR) and admission-discharge-transfer records (ADT)
for patient visits at the UIHC for the period 2007-2011. The 154,230
patient visits in the data are divided into two groups: (i) visitcpy, vis-
its during which patients tested positive for CDI and (ii) visitcpry,
the rest of the visits. As in [11, 24, 30], we exclude short visits in
both visitcpy and visitcpry, where patients are discharged within
48 hours of admission. The reason for excluding short visits from
visitcpy is that such CDI cases are unlikely to be hospital-associated
and the reason for then excluding short visits from visitcpyy is that
otherwise the length of a visit field might end up being a prominent
artificial signal of a non-CDI visit. For each visit in visitcpry, we
generate one instance per day (CDIx instances) from the admission
date to discharge date for that visit. Similarly, we generate daily
instances (CDI instances) for each visit in visitcpy, starting from
the admission date, but only until three days before the CDI pos-
itive test date [22]. We exclude instances for the last three days
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before a positive CDI test because there could be modifications to
patient treatment during this period that could be in response to
potential CDL This process results in 8,946 CDI instances from 750
visits in visitcpy and 988,780 CDIx instances from 115,271 visits in
visitcprx-

2.1.1 Individual risk factors for CDI. We include in each instance,
25 features extracted from the EMR and ADT data, which are consid-
ered risk factors for CDI in literature [7, 9]: length of stay of the visit
until the date of the instance (LOS), age, gender, previous UIHC visit
within 60 days (PV), the number of high-risk antibiotics prescribed
(ABXs) and the number of gastric acid suppressors prescribed
(GASs) during the visit. Guided by literature on antibiotics that are
considered high risk for CDI [25], we use the following five ABX's
as features: (i) Amoxillin or Ampicillin (ABX 1), (ii) Clindamycin
(ABX 2), (iii) Third generation Cephalosporin (ABX 3), (iv) Fourth
genenration Cephalosporin (ABX 4), and (v) Fluoroquinolone (ABX
5). Similarly, guided by literature on risk factors for CDI [6], we
use the following two GASs as features: (i) H2-receptor antago-
nists (GAS 1), and (ii) proton pump inhibitors (GAS 2). We generate
three features each for the seven medications (ABXs and GASs): (i)
prescription (Ppedicarion)s @ binary feature, indicating if the medi-
cation was prescribed on the date of the instance, (ii) sum prescrip-
tion count (SP,edication), Number of days where the medication
was prescribed to the patient, and (iii) mean prescription count
(MPyedication = sp’";f%) of the medication. We use ABXy
for x € {1,2,3,4,5} to denote the tuple (PaBx,»SPaBx,» MPaBX, )
correspoding to ABX x. Similarly, we use GASy, for x € {1, 2} to
denote the tuple (PGASX s SPGASX, MPGASX)-

2.1.2  Exposure risk factors for CDI. Colonization pressure is a mea-
sure of the proportion of patients infected or colonized with a
specific pathogen in a specific physical area (e.g., a hospital ward
or a geographic region) over a specified period of time [2]. Colo-
nization pressure serves as a proxy measure for exposure, and the
notion of colonization pressure has also been applied to CDI, albeit
only those patients who have tested positive for CDI are included in
the pressure calculation [7, 30]. Colonized patients who are asymp-
tomatic are typically undetected and are usually excluded from
pressure calculations. As has been done in other studies [7, 30], we
compute this modified measure of colonization pressure, which we
call CDI pressure and use it as an exposure risk factor for CDI.

We assume that CDI patients are infectious 3 days before the
positive result and up to 14 days after the test date. For each visit in
visitcpr and visitcpry, we keep track of the number of infectious
CDI patients in the same room or unit, daily. From these counts,
we generate the following four features:

e Unit sum CDI pressure (SCPypir): cumulative daily number
of infectious CDI patients in the same unit, from admission
date up to the date of the instance

e Room sum CDI pressure (SCProom): cumulative daily number
of infectious CDI patients in the same room from admission
date up to the date of the instance

o Unit mean CDI pressure (MCPypi;):

e Room mean CDI pressure (MCProom):

SCPumt
LOS
SCProom
LOS

Table 1 summarizes basic statistics of these features for CDI
visits and CDIx visits.
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2.2 Training the Stage 1 Model

The goal of our Stage 1 model is to predict the likelihood of an
individual being an asymptomatic C. diff carrier, as a function of
certain hand-curated risk factors. As mentioned earlier, the funda-
mental obstacle to training this model is the fact that our data lacks
“ground truth” labels. So the training of our Stage 1 model depends
on hypotheses we make regarding how asymptomatic C. diff car-
riers relate to patients who have tested positive for CDI. The first
hypothesis we consider is the following.

Hypothesis 1: Asymptomatic C. diff carriers and CDI
cases have similar risk profiles.

This hypothesis is not necessarily backed by studies in the lit-
erature; as mentioned earlier, the risk factors for asymptomatic
C. diff carriage and the progression from C. diff carriage to CDI
is not well understood. We propose this as a simple, reasonable
hypothesis that allows us to train C. diff carriage prediction models
that we can then evaluate. If we assume this hypothesis, we can
train our Stage 1 model using CDI cases as instance labels. Then,
patients who are assigned a high probability by a model trained in
this manner, but are not CDI cases, are inferred to be asymptomatic
C. diff carriers. Variants of this Stage 1 model can be obtained by
using different subsets of features. More specifically, we partition
the set of features into three groups: (i) baseline feature set B, con-
sisting of LOS, age, gender, PV, GAS1, and GAS3, (ii) colonization
pressure feature set CP, consisting of SCPynit, SCProom, MCPynit,
and MCP;oom, and (iii) ABX feature set ABX, consisting of the 5
high-risk antibiotic feature tuples described earlier. For a subset

Table 1: Basic statistics of features. The values denote mean
over each visit in visitcp; or visitcpr, and values in the
bracket denote std. dev. For most of the features the values
for visitcpy are much larger than the corresponding values
for visitcpry (e.g., LOS: 10.93 vs 7.58).

Feature visitcpr visiteprx
LOS 10.93 (23.09) | 7.58 (11.14)
age 53.5 (23.23) | 44.23 (24.9)

gender 0.55 (0.5) 0.48 (0.5)
PV 0.35(0.48) | 0.19(0.39)

SPGas1 1.71(5.54) | 0.92(3.37)

SPgas: | 5.81(13.98) | 2.98 (6.37)

MPGas1 0.17 (0.34) | 0.11(0.28)
MPGas: 0.42 (0.41) 0.33 (0.4)

SPaBx1 0.46 (2.37) | 0.48 (2.37)

SPaBx2 0.1 (1) 0.05 (0.57)

SPaBx3 0.39 (2.07) 0.21 (1.23)

SPaBx4 1.2 (3.55) 0.24 (1.58)

SPaBxs 1.58 (4.68) | 0.73(2.47)

MPapx1 | 0.04(0.15) | 0.05(0.19)
MPapxs | 0.01(0.06) 0 (0.04)
MPapx3 | 0.04(0.16) | 0.03(0.13)
MPaBx4 0.1 (0.26) 0.02 (0.13)
MPapxs | 0.11(0.23) | 0.08(0.21)
SCPynit 1.47 (3.18) | 2.16 (4.84)
SCProom | 0.03(0.23) | 0.08(0.75)
MCPyunir | 0.23(0.46) | 0.26(0.47)
MCPyroom | 0.01(0.1) 0.01 (0.06)
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S C {B,CP, ABX}, let DS denote the dataset with every CDI and
CDIx instance consisting of features from S. We train 4 different
Stage 1 models using datasets DB, DBCP ,DBABX DB.CP.ABX

We train additional Stage 1 models on the basis of the following
hypothesis.

Hypothesis 2: The mechanism for acquiring (symp-
tomatic) CDI consists of the patient first being an
asymptomatic C. diff carrier and then being prescribed
high-risk antibiotics.
Again, this hypothesis is not necessarily backed by medical stud-
ies, though mechanistic models for CDI (e.g., [33]) often attribute
the transition from C. diff carriage to CDI to the use of additional
high-risk antibiotics. This hypothesis has the following useful im-
plication. Suppose A is the subset of patients who were prescribed
high-risk antibiotics during their visit. Then, the subset Acpy C A,
consisting of patients who tested positive for CDI is exactly identi-
cal to the subset of A of patients who were asymptomatic C. diff
carriers (prior to receiving antibiotics) and A \ Acpy is exactly the
subset of A of patients who are not asymptomatic C. diff carriers.
This motivates the restriction of our data set to just those daily
instances where patients are prescribed to at least one ABX since
admission. When a model is trained on this subset of data, the
instances in visitcpr, that the model assigns the True label are
inferred to be asymptomatic C. diff carriers. 5,483 CDI instances
out of 359 visits from visitcpy and 374,821 CDIx instances out
of 35,002 visits from visitcpry result from this restriction. Using

this restricted data set, we train 4 additional Stage 1 models using

B B.CP B.ABX B,CP,ABX
datasets Dy gy~ 0. Dapxso: Dapx~o: PaBxZo
by considering different subsets of features.

that are obtained

2.2.1 Model training. Each dataset of instances mentioned in the
previous section contains timestamped instances for the 5-year
period 2007-2011. For each dataset, we build five prediction models,
each model obtained by training on a 4-year subset, with one year
excluded. Recall that the labels in our datasets correspond to a
positive CDI test, whereas our goal for each model is to predict the
likelihood of a patient being an asymptomatic C. diff carrier. For
each dataset, a multi-layer perceptron model (MLP) is trained on
the instances in 4 years (we use 20% of instances as a validation set,
not used in training), and tested on the instances in the remaining
year. We train a two-layer MLP, with a hidden layer size of 16, ReLU
activation, and drop out of 0.5 using the Adam optimizer with a
learning rate of 0.01 and maximum training for 200 epochs, but
with an early stopping if the validation loss does not decrease for 3
consecutive epochs.

After the training and testing of the five models is completed,
for each instance (a day during a patient visit), we have a probabil-
ity that we interpret to be the likelihood of that patient being an
asymptomatic C. diff carrier on that day. We now assign to each
visit in visitcpry, the maximum probability of all the instances from
the visit. We interpret this probability as the likelihood that the
patient was a C. diff carrier during this visit. Our next step is to
use these probabilities to mark a subset of the visits as being C. diff
carrier visits. According to a survey [14] of studies on the preva-
lence of C. diff carriage, 0-17.5% of healthy adults were carriers
of C. diff strains without clinical signs of CDI. Keeping this range
in mind, we separately select the top 10%, top 5%, and top 3% of
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the visits in visitcpy, by probability and designate these sets of
visits as visitacprion, visitacprse. and visitacprsg, respectively.
Note that we have 8 different Stage 1 models, which means we have
8 different sets of visitacprios, VisitacDIs%, and visitacprse, as a
result.

3 EVALUATING ASYMPTOMATIC C. DIFF
CARRIER PREDICTIONS

The output of the Stage 1 Model is a subset of patient visits that
are marked with the patient being an asymptomatic C. diff carrier
during the visit. Note that the patients do not have a positive CDI
test during these visits. As mentioned earlier, the key difficulty
in evaluating this inference is that we do not have “ground truth”
labels for asymptomatic C. diff carriers. We propose two indirect
ways of validating and evaluating our Stage 1 model predictions.

(i) We design a 2-stage model for predicting symptomatic CDI
cases that uses, in addition to standard risk factors of CDI,
features that measure exposure to asymptomatic C. diff carri-
ers (as predicted by our Stage 1 model). We investigate if this
2-stage model has improved performance due to inclusion of
these additional exposure features. Furthermore, this frame-
work also allows us to indirectly compare different Stage 1
models, by virtue of how well the 2-Stage model using that
particular Stage 1 model performed.

(if) We perform statistical tests to determine if the collection of
CDI cases and asymptomatic C. diff carriers (as inferred by
our Stage 1 model) exhibit spatio-temporal clustering. In our
prior work [27], we observed statistically significant spatio-
temporal interaction and clustering of CDI cases at the UIHC.
Note that these were just the cases with a positive CDI test.
We interpreted this finding as providing evidence of the
within-hospital spread of CDI. A similar result for the collec-
tion of cases that additionally includes asymptomatic C. diff
carriers will provide evidence that asymptomatic C. diff car-
riers also have a role to play in the within-hospital spread of
CDL

3.1 Training the Stage 2 Model

We now design a CDI prediction model that includes exposure to
asymptomatic C. diff carriers (as predicted by our Stage 1 model)
as features. We investigate the question of whether including these
exposure features improves the CDI model prediction.

In Section 2.1.2 we defined 4 different measures, called CDI
pressures, of exposure to CDI cases. In a similar manner, we define
4 measures of exposure to asymptomatic C. diff carriers. We start
by assuming that any patient designated to be an asymptomatic
C. diff carrier during a visit is infectious throughout the visit. This
assumption leads to the following definition of asymptomatic C. diff
carrier pressures AP, consisting of SAPynit, SAProom, MAPynit, and
MAProom.

e Unit sum asymptomatic C. diff pressure (SAPypi;): cumula-
tive daily exposure to asymptomatic C. diff carriers detected
in the Stage 1 model in the same unit from admission date
up to the date of the instance
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e Room sum asymptomatic C. diff pressure (SAProom): cumu-
lative daily exposure to asymptomatic C. diff carriers in the
same room from admission date up to the date of the instance

o Unit mean asymptomatic C. diff pressure (MAPyn;;): s

APypir
S

o Room mean asymptomatic C. diff pressure (MAPro0m): %

Figure 1 shows the interaction between Stage 1 and Stage 2 models.

Stage 1

D, a0
SC {8, CP. ABX}

Stage 2
B | cp [aBx]| ar
D‘:

S = {B, CP, ABX, AP}

Figure 1: Diagram of the 2-stage model

In Section 2, we defined 8 different models for predicting asymp-
tomatic C. diff carriers, 4 for each of the two hypotheses. From
each of these 8 models, we get a different set of 4 exposure features,
representing exposure to asymptomatic C. diff carriers. As a result,
we evaluate 8 different Stage 2 models (Table 3) and for comparison
we also evaluate one Stage 1 model (Table 2) without any feature
corresponding to exposure to asymptomatic C. diff carriers.

3.2 Spatio-temporal Clustering of
Symptomatic and Asymptomatic CDI Cases

In the previous work, we created a hospital graph of UIHC using
room and spaces in a corridor as nodes (19K) and direct passage
between node pairs in the 5-6m distance as edges (47K) [5]. We
associate with each CDI case a timestamp (date of positive CDI test)
and a location (room the patient was in at the time of positive CDI
test). Two CDI cases are said to be in spatio-temporal proximity if
the two cases occurred within 14 days of each other in rooms that
are (roughly) within 30 m apart from each other, which is within 5
hop distance in the hospital graph [26]. This notion is conveniently
described to be a CDI case proximity graph Gepr = (Vepr, Ecpi)s
where Vepy is the set of CDI cases at the UIHC during the period
2007-2011 and Ecpy is the edges that connects pairs of CDI cases in
spatio-temporal proximity. Note that CDI cases that tested positive
for CDI within 48 hours of admission are not included in Veopr
because these cases are unlikely to be acquired during the hospital
visit. We can generalize the notion of CDI case proximity graph in
a natural way to include asymptomatic C. diff carriers. With each
patient visit marked as an asymptomatic C. diff carrier case by our
Stage 1 model, we associate a date, which is the date during the visit
that was assigned the highest probability of being an asymptomatic
C. diff carrier. Once a date is assigned to a visit, we can also associate
a location to the visit, which is the room occupied by the patient on
that date. For x € {3, 5, 10}, let Let Greprxs = (VReDIx% ERCDIx%)
denote the revealed CDI case proximity graph. Here Vpeprxy is the
union of the set of CDI cases and the set of asymptomatic C. diff
cases output by our Stage 1 model when it was required to mark x%
of visits in visitcpry as asymptomatic C. diff carrier visits. Among
the 8 sets of asymptomatic C. diff cases from 8 different Stage
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1 models, we select the set of cases where adding the exposure
features from these cases yields the best performance on the Stage
2 model. ERcprx is the set of edges connecting pairs of nodes in
VreDIxs that are in spatio-temporal proximity.

We compute a number of basic network statistics of Greprxa, X €
{3,5,10} and compare these with corresponding statistics for Gepy
(Table 6). We then compute specific measures of network density
and make a similar comparison (Table 7). Finally, we perform statis-
tical tests on Greprxa, X € {3, 5,10} (e.g., Knox test [17]) for testing
if the union of the set of CDI cases and the set of asymptomatic
C. diff cases exhibit spatio-temporal clustering. The results from
these computations are described in Section 4.

4 RESULTS
4.1 Stage 1 Model

Table 2 summarizes the performance of the 8 Stage 1 Models, 4
models derived from each hypothesis (see Section 2). Recall that
even though the purpose of these models is to predict asymptomatic
C. diff carriers, they are trained on labeled data, where the labels
indicate CDI. Table 2 shows how well these models are able to
predict CDIL As an evaluation measure, we report AUC, the area
under the receiver operating characteristic (ROC) curve, as the eval-
uation metric for our models since AUC is widely used as an evalu-
ation metric for an imbalanced dataset. Note that our datasets are
highly imbalanced: the imbalance ratio of datasets D5 and wa X500
S ¢ {B,CP,ABX} is 111:1 and 68:1, respectively, which makes
model training challenging. The AUCs reported in Table 2 are the
test AUCs averaged over five years of training and testing on each
dataset; this procedure is similar to k-fold cross-validation, but each
fold corresponds to the instances in the same year. The 8 columns
on the right of the table correspond to the 8 different models, as
indicated by the column labels. The best performing Stage 1 Model
is the one trained on DB-ABX.CP , with a mean AUC of 0.719. This is
not surprising because this model uses features of all the standard
risk factors for symptomatic CDIL The next best model is the one
trained on DBCP , with a mean AUC of 0.704. This result shows
that ABX helps the prediction of symptomatic CDI. Again this is
not surprising because high-risk antibiotics play an important role
in predictive models for CDI. Exposure to CDI patients consistently
help the prediction, as revealed by pairwise comparisons of models
trained on features that use CDI pressures vs. those that do not
use CDI pressures, e.g. DBABX.CP 4nd DBABX The overall AUCs

from the models trained on DleX>0’ S C {B,CP, ABX} is smaller

compared to those trained on DS,S C {B,CP, ABX}, though this
comparison may not be fair since Df&BX>0 has a smaller set of

instances compared to DS,

Table 2: AUC on Stage 1 models

B B,ABX B,CP B,ABX,CP B B,ABX B.CP B ABX,CP
D D D D DABX 0 D/-\BX 0 DABX 0 D/-\BX 0
AUC|0676] 0635 | 0.704 | _*0.719 0.504 | 0584 | 0672 0.648

3 AUC with asterisk denote best performer for D, S C {B, CP, ABX }
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4.2 Stage 2 Model

The results of Stage 2 models are shown in Table 3. Each AUC in the
table corresponds to the mean test AUC averaged over five years
of training and testing on each dataset. As denoted by the label
at the top (in the first row), every Stage 2 model evaluated here
is trained on DBABX.CPAP o the dataset consisting of all risk
factors for symptomatic CDI (B, ABX, and CP) along with asymp-
tomatic pressures AP. The 24 models shown in this table differ in
how asymptomatic C. diff carriers are identified in Stage 1. The 8
column labels in the second row on the right of the table correspond
to the 8 different models on which the visitscpri10%, visitaAcDI5%>
and visitacprsy (bottom 3 rows in the table) are detected, as indi-
cated by the column labels. The most important takeaway from this
table is that using DBCF as the dataset during Stage 1 consistently
leads to the best performance. In other words, a model that uses
baseline features (B) and colonization pressure features (CP), but
not high-risk antibiotic features (ABX) to identify asymptomatic
C. diff carriers, seems to most accurately identify C. diff carriers.
This intriguing finding that is consistent with [16], seems to indi-
cate that antibiotics that are risk factors for CDI are not associated
with asymptomatic C.diff carriage.

The three Stage 2 models corresponding to DBCP (AUC: 0.733,
0.729, 0.727) outperform the best performing Stage 1 model (
AUC: 0.719), clearly indicating that exposure to asymptomatic
C. diff carriers impacts the spread of CDI Most of the remain-
ing Stage 2 models perform even worse than the Stage 1 model
using DBABX.CP 1y other words, using exposure to asymptomatic
C. diff carriers is worse than not using such exposure features, if
asymptomatic C. diff carriers are detected poorly. Table 5 shows the
AP of visitcpr and visitcpry that is computed from asymptomatic
C. diff carriers which are detected in Stage 1 Model on DBCP.

As a sensitivity test of our Stage 2 models, we train models on
additional datasets that contain as features, exposure to randomly
selected visits in visitcpyy, instead of AP. We randomly select 10% of
the visits in visitcpry, and generate 4 exposure features from these
visits (RP) in the same manner as the AP features were generated.
We repeat this five times to generate five different sets of random
exposure features (RPs), namely Random;,i € {1---5}. The results
are in Table 4. The mean AUCs on these Stage 2 models are all
worse than the AUCs obtained just by using the Stage 1 model on
DBABX.CP Thjs result shows that adding pressure features from a
random subset of visits does not improve the CDI prediction.

4.3 Spatio-temporal Clustering

Table 6 shows the network statistics of Gopr and revealed CDI case

proximity graphs Greprxs = (VReDIx%: ERcDIx%)- Here VRepixs,
is the union of the set of CDI cases and the set of asymptomatic

Table 3: AUC on Stage 2 models

DB-ABX.CP

DBABX.CPAP
i P P R A
10%|0.712| 0.687 | *0.733 0.710 0.700 0.724 0.697 0.703
5% [0.701| 0.690 | *0.727 0.685 0.693 0.714 0.689 0.702
3% 10.689| 0.698 | *0.729 0.690 0.710 0.704 0.686 0.711
2AUC with asterisk denote best performer

16

Jang, et al.

C. diff cases output by our best-performing Stage 1 model (DBCP),

with the requirement that x% of the visits from visitcpr, are marked
as asymptomatic C. diff carrier visits. The number of nodes and
edges (|V], |E|), average, max and std dev of degrees ((k), kmax, and
std), the clustering coefficient (cc), the average size of connected
components avg(|Ecpnt|), and the number of nodes and edges of
the giant component (|Vgiant|, |Egiant ), all increase as we add more
asymptomatic C. diff cases to the graph.

Figure 2 shows a connected component of Grcprios that con-
tains 7 CDI cases and 48 asymptomatic C. diff carriers over 3 months
period (March 21 - July 6 2011). The CDI case (July 6) in the bottom
of the graph is only connected to an asymptomatic C. diff carrier
(July 1) who has connections to CDI cases (June 18, June 19). This
asymptomatic carrier may be attributable to the CDI case that is
not directly connected with other CDI cases.

We compared the Gepr and Greprxs, X € {3, 5,10} on the four
different measures of density: (1) % number of edges / number
of possible edges, (2) % number of edges / number of nodes, (3)

|Egiant |

Vi
(4) avg ( :f/clpnt 1)
nodes. All of the density measures were larger in the revealed CDI
case proximity graphs compared to those in the CDI case proximity
graph. Furthermore, all four density measures of Grcprios were
the largest, followed by Greprse and Greprsg, as shown in Table 7.

, the size of the giant component / number of nodes, and

, average size of connected components / number of

Table 4: AUC on Stage 2 models (pressures are computed
from random selection of 10% of the visits in visitcpyy)

DBABX.CP.RP
RP |Random1 |Random2|Random3|Random4|Random5
AUC| 0.703 0.709 0.684 *0.711 0.696

2AUC with asterisk denote best performer

Table 5: Statistics of AP computed from visit4cprios detected
in Stage 1 model trained on DBCP

Feature visitcpr visitcprx
SAPynit 35.74 (83.24) | 34.33 (64.16)
SAProom 2.15 (18.26) 2.91 (16.02)
MAPy,nis 2.99 (2.9) 3.93 (4.02)

MAPro0m 0.15 (0.34) 0.27 (0.55)

Table 6: Network statistics

Gepr | Grepiss | Greprss | GRebrios

VI 783 1241 6546 12310

|E| 120 4150 10630 37842

(k) 0.307 1.957 3.248 6.148

kmax 4 18 31 47

std 0.581 2.095 3.145 5.195

cc 0.013 0.306 0.443 0.561
avg(|Ecpnel) | 0.179 2.262 5.502 21.141
[Vyiant| 8 118 245 1239
|Egiant| 10 232 738 6393
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Figure 2: A connected component in Grcprigy, composed of
7 CDI cases, in blue, and 48 asymptomatic C. diff carriers,
in orange, over 3 months period (March 21 - July 6 2011).
The CDI case (July 6) on the bottom-most of the graph is not
connected to other CDI cases directly, but an asymptomatic
C. diff carrier (July 1) connects them to CDI cases (June 18,
June 19).

Additionally, we performed statistical tests on Greprxg, X €
{3,5,10} to test if the union of the set of CDI cases and the set
of asymptomatic C. diff cases exhibits spatio-temporal clustering.
For each revealed CDI case proximity graph, we performed the
Knox test by comparing the number of edges in Greprxy with the
distribution of the number of edges in the graphs that are obtained
by permuting the timestamp of the cases in Greprxy for random
100 permutations. Similarly, we test the statistical significance of
the average size of the largest component (avg(|Ecpnt|)) and the
size of the largest component (|Egjan¢|). In Table 8, the p-value of
the Knox test and the average size of the largest component was
0 for all of the revealed CDI case proximity graphs that indicate
spatio-temporal clustering of the cases. However, we observed that
the size of the |Egiqn| in the permuted graphs is mostly larger than
the revealed case proximity graphs of Greprses and Greprios. Our
conjecture regarding this last result is that the time interval of 5
years is not long enough to scatter the timestamps of cases far away
from each other.

5 DISCUSSION AND FUTURE WORK

Our results point to several avenues for future work that involve
gathering prospective clinical data. Our Stage 1 model for identi-
fying patients who are likely to be asymptomatic C. diff carriers
needs to be clinically tested. Designing low-cost clinical protocols
for gathering these data and performing appropriate statistical tests
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is critical in order to have confidence in our results. One of our
findings suggests that risk factors for asymptomatic C. diff carriage
include most of the standard risk factors, with the exception of
high-risk antibiotics. This finding needs to be made more precise
and also tested by gathering prospective clinical data.

The datasets that are used in this paper are highly imbalanced
with the imbalance ratio of 111:1 and 68:1 for DfxBX>0 and DS R
S € {B,CP, ABX, AP}, respectively, that makes the classification
problem extremely difficult. To combat its extreme imbalance, we
explored undersampling the majority instances in the training set
during the training procedures of Stage 1 models; we gained some
improvement in the training AUCs, but there was not much of a
difference in the testing set AUCs, as we maintained the imbalance
in the test set. We aim to explore oversampling strategies such as
SMOTE [4] in our future work to improve the overall performance
of our classifiers.

In this paper, we only consider the possibility of CDI cases being
exposed to asymptomatic C. diff carriers. We do not consider more
complicated chains of exposure involving sequences of asymp-
tomatic C. diff carriers. Combining more complicated exposure
chains with individual risk models is another avenue for future
work. It seems possible to use formulations that involve the Steiner
tree problem [28, 31, 32] for this purpose.

Another direction of the future work is using deep embedding
approaches, such as Graph Convolutional Networks (GCN) [15]
where we let the deep neural network to learn from individual risk
factors in the EMR and their exposure to other patients that are
captured in the ADT data.

Our asymptomatic C. diff carrier detection method can be applied
in other infectious diseases where exposure plays an important role
in disease diffusion. It is usually unknown if people we come in
contact with are asymptomatic carriers of an infectious diseases.
However, if data on an individual’s risk factors to an infectious
disease, contact information between these individuals, and a subset

Table 7: Network density

Gepr | Grepiss | Grepiss | GRepIoz

Ilbill 0.000392 | 0.000462 0.000496 0.000499

% 0.153257 | 0.978543 1.623892 3.074086
% 0.012771 0.054704 0.112741 0.519334
w 0.000229 | 0.000533 0.000841 0.001717

Table 8: Statistical test results on Grcprxs and the mean val-
ues of the statistics on the permuted graphs. Values in brack-
ets denote std. dev.

Grepissn | Greprssw | GRepIos
|E], Knox test 0 0 0
p-value | avg(|Ecpntl) 0 0 0
|Egiam‘ | 0.37 0.99 0.77
|E] 3650 (58) | 9213 (115) | 33790 (223)
statistics | avg(|Ecpnel) | 1.87 (0.04) | 4.53 (0.09) | 18.56 (0.28)
|Egiant| 228 (75) | 1091 (142) | 6620 (325)
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of individuals’ infectious state is available, then our model would
be able to detect the latent spreaders.
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ABSTRACT

In this work, we examine a novel forecasting approach for COVID-19
case prediction that uses Graph Neural Networks and mobility data.
In contrast to existing time series forecasting models, the proposed
approach learns from a single large-scale spatio-temporal graph,
where nodes represent the region-level human mobility, spatial
edges represent the human mobility based inter-region connectiv-
ity, and temporal edges represent node features through time. We
evaluate this approach on the US county level COVID-19 dataset,
and demonstrate that the rich spatial and temporal information
leveraged by the graph neural network allows the model to learn
complex dynamics. We show a 6% reduction of RMSLE and an ab-
solute Pearson Correlation improvement from 0.9978 to 0.998 com-
pared to the best performing baseline models. This novel source of
information combined with graph based deep learning approaches
can be a powerful tool to understand the spread and evolution of
COVID-19. We encourage others to further develop a novel mod-
eling paradigm for infectious disease based on GNNs and high
resolution mobility data.

1 INTRODUCTION

From late 2019 to early 2020, COVID-19 went from a local out-
break to a worldwide pandemic, one that has infected over 6.67M
people and resulted in over 391K deaths worldwide [29]. Between
large-scale country-wide quarantines and ‘lockdowns’, COVID-19
is responsible for an estimated 3-10 trillion dollars in economic
damage to the global economy [21]. In a state of pandemic, the
ability to accurately forecast caseload is extremely important to
help inform policymakers on how to provision limited healthcare
resources, rapidly control outbreaks, and ensure the safety of the
general public.

In order to prepare, understand, and control the spread of the
disease, researchers worldwide have come together in a collabora-
tive effort to model and forecast COVID-19. Based on our review
of the literature, there are two popular approaches for such epi-
demiological modelling. One is the mechanistic approach - for
example, compartmental and agent based models that hard-code
predefined disease transmission dynamics at either the population
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level [24, 34] or the individual level [8]. The other is the time se-
ries learning approach - for example, applying curve-fitting [20],
Autoregression (AR) [12], or deep learning [34] on time series data.

These approaches often assume a relatively closed-system, where
forecasts for a given location are dependent only on information
from that location or some observed patterns from other locations.
In practice, we intuit that infection data on inter-regional interac-
tions provides a unique and highly meaningful avenue for modelling
forecasts. In other words, it is reasonable that a regionéAZs future
disease cases are dependent on its own historical information as
well as other regions’, people traveling to/out of this region and
regions with similar epidemic patterns, etc. Based on this insight,
we believe we can improve forecast accuracy by 1) utilizing more ac-
curate real-time data that can describe the inter-region interactions
and region-level mobility and 2) developing a unifying approach
that can encompass both the temporal and spatial interactions for
infectious disease modeling. Historically, this kind of regional move-
ment is difficult to capture. However, researchers have correctly
noticed that the widespread use of GPS enabled mobile devices
provides a novel and highly accurate source of mobility data, and
have called upon the epidemiological community to make ample
use of this powerful new data source [7, 23].

In this work, we focus on the problem of forecasting COVID-19 at
the county level in the United States. We propose a spatio-temporal
graph neural network that can learn the complex dynamics inher-
ent to disease modeling, and use this model to make forecasts on
COVID-19 daily new cases from fine-grained mobility data. We
run several experiments showing the power of novel mobility data
within the GNN framework, and conclude with an analysis of mo-
bility data and its potential in tracking disease spread.

2 BACKGROUND
2.1 Mobility Data in Graphs

Obtaining fine-grained human mobility data that can effectively
capture the inter- and intra-region flows of human activity has
become significantly more feasible in the last decade. In addition
to being vital for accurately modeling disease spread, these data
sources are especially important to understand the efficacy of non-
pharmaceutical interventions (NPI) against COVID-19, such as so-
cial distancing, shelter-in-place, and the shut-down of interstate
and international travel.

The rapid work of the epidemiological academic community was
vital for understanding the role of international flights in the early
spread of COVID-19 to different countries [1, 34], while epidemic
curve fitting analysis for COVID-19 on the SafeGraph dataset [31]
helped to better model the effects and efficacy of social distancing.
We build on those efforts by examining and utilizing two Google
mobility datasets, which offer a global and comprehensive view
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of inter- and intra-region human mobility. These datasets are de-
scribed in more detail in subsection 4.1.

2.2 Spatio-Temporal Graph Neural Networks

Graphs are natural representations for a wide variety of real-life
data in social, biological, financial, and many other fields. Recently,
graph neural network (GNN) based deep learning methods [4, 6, 32,
37, 38] have shown superior performance on several tasks, including
semi-supervised node classification [14, 16, 28], link prediction [5,
17, 36], community detection [9, 15, 26], graph classification [13,
22, 33], and recommendations [19, 35].

Spatio-temporal graphs are a kind of graph that model connec-
tions between nodes as a function of time and space, and have
found uses in a wide variety of fields [25]. GNNs have been success-
fully applied to spatio-temporal traffic graphs [11] and (especially
relevant to this work) spatio-temporal influenza forecasting [10].
In these latter two cases, temporal dependencies were primarily
incorporated at the model level, either through decomposition of a
dynamic Laplacian matrix or through a recurrent neural net.

3 METHOD

3.1 Graph Neural Networks

The core insight behind graph neural network models is that the
transformation of the input node’s signal can be coupled with the
propagation of information from a node’s neighbors in order to bet-
ter inform the future hidden state of the original input. This is most
evident in the message-passing framework proposed by Gilmer
et al. [13], which unifies many previously proposed methods. In
such approaches, the update at layer (I + 1) is:

mElH): Z T(l)(hgl),hy)), hglﬂ):g(l)(hgl),myH)) )
JeN()

where () and G are learned message functions and node up-
date functions respectively, m( are the messages passed between

nodes, and h(il) are the node representations. The computation is
carried out in two phases: first, messages are propagated along the
neighbors; and second, the messages are aggregated to obtain the
updated representations.

3.2 Modelling the COVID-19 Graph

In infectious disease modeling, we usually have multiple time-series
sequences that represent the observables of transmission dynamics
in each location. The prediction problem is usually formulated
as a regression learning task that takes in a certain time series
t—k,...,t —1,t and outputs a single value t + 1 or future time
series t + 1,¢ + 2, ... as forecasted values. However, time series
make a poor fit for modeling human mobility across locations.
Mobility data is naturally represented as a spatial-graph, where
any individual node represents a location i that is connected to
an arbitrary number of other nodes j,I,m, ..., and where edge-
weights correspond to measures of human mobility between the
nodes.

In order to model spatial and temporal dependencies, we create
a graph with different edge types. In the spatial domain, edges
represent direct location-to-location movement and are weighted
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Figure 1: A slice of the COVID-19 graph showing spatial and
temporal edges (highlighted in red) across three days. Each
slice represents spatial connections between counties, while
the connections between slices represent temporal relation-
ships. For clarity, only temporal edges to the center node are
shown; in practice, every node in the graph has direct tem-
poral edges to nodes in d previous days.

based on mobility flows normalized against the intra-flow (in other
words, the amount of flow internal to the location). In the temporal
domain, edges simply represent binary connections to past days.
The graph manifests as 100 stacked layers. Each layer represents
the county connectivity graph for that day, with the bottom layer
representing Feb 22nd, 2020 (when cases began appearing in earnest
in the US), and the top layer representing May 31st, 2020. Each node
within each layer has direct edges to the 7 nodes directly before it
in time, i.e. a week’s worth of temporal information. We provide a
visual of a part of the graph in Figure 1.

3.3 Skip-Connections Model

For our graph convolutions, we use a version of the spectral graph
convolution model proposed by Kipf and Welling [16], modified
with skip-connections between layers to avoid diluting the self-node
feature state. Specifically, the output of each layer is concatenated
with a learned embedding from the temporal node features. The
model prediction P can be represented as:

Ho = mlp(x¢|xt-1]...|x¢—q) (2
Hy,q = o(AHjW)) | Ho 3)
P = mlp(Hs) 4)

where H represents the hidden state at layer I, A is the spectral
normalized adjacency matrix, W is the learned weight matrix at
layer [, | is the concat operator, and o is a nonlinearity (in our case,
arelu). See Figure 2 for a visual representation. The first embedding,
H, is simply the output of an mlp over the node’s temporal features
x at time ¢t reaching back d days, while the final prediction is the
output of an mlp over s spatial hops.
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Figure 2: A visualization of a 2-hop Skip-Connection model.
Multiple layers of spatial aggregations are used on tempo-
ral embedding vectors. At each layer, the embedding of the
seed-node (represented in blue) is concatenated and propa-
gated up to the next embedding layer. The final embedding
is passed through an MLP and used to predict P.

4 EXPERIMENTS

4.1 Data

We make use of three datasets: the New York Times (NYT) COVID-19
dataset!, the Google COVID-19 Aggregated Mobility Research
Dataset, and the Google Community Mobility Reports®. The Aggre-
gated Mobility Research Dataset helps us understand the quantity
of movement, while the Community Mobility Reports helps us un-
derstand the dynamics of various types of movement. Together,
these datasets add significant lift to the standard node features
provided by the NYT.

4.1.1 Common Node Features. Each node contains features for
state, county, day, past cases, and past deaths. The latter two are
represented as normalized vectors that stretch back d days. We use
COVID-19 case and death count numbers published by the New
York Times [27], which includes daily reports of new infections and
deaths at both state and county level in US.

4.1.2  Aggregated Mobility Research Dataset. The Google COVID-
19 Aggregated Mobility Research Dataset aggregates weekly flows
of users from region to region, where the region is at a resolution of
5km?. The flows can be further aggregated to obtain inter-county
flows and intra-county flows(source and destination regions are
in the same county) to build our proposed graph network. This
information is useful for understanding how people move before
and during the pandemic - for example, Figure 3 shows the re-
duction in inter-county flows in US counties in April, compared
to a January baseline. Figure 4 illustrates the change in mobility
to King County, Washington, where mobility dropped by nearly
100% from distant counties, likely due to reductions in air travel.
By comparison, reductions are less strong from nearby counties,
e.g. 64% reduction from Snohomish County, Washington. For a full
description of how the Aggregated Mobility Research Dataset is
created, see (Appendix) 6.1.

!https://github.com/nytimes/covid-19-data
2https://www.google.com/covid19/mobility/
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4.1.3  Community Mobility Reports. The Community Mobility Re-
ports summarize mobility trends at various categories of places that
are aggregated at the county level. The categories include: grocery
and pharmacy, parks, transit stations, workplaces, residential, and
retail and recreation. The dataset was normalized to have 0 as the
‘normal’ mobility based on median value for the corresponding day
of the week, during the 5-week period Jan 3—Feb 6, 2020 [18], and
deviations are measured as the relative changes in mobility from
the baseline. A value of -0.25 under transit stations therefore repre-
sents a 25% reduction in visits to public transit stations compared
against baseline. Figure 5 provides a visual example of the daily
mobility changes in King County, Washington for each category in
Google’s Community Mobility Reports.

4.1.4  Limitations of Data Sources. These results should be inter-
preted in light of several important limitations. First, the Google
mobility data is limited to smartphone users who have opted in to
Google’s Location History feature, which is off by default. These
data may not be representative of the population as whole, and
furthermore their representativeness may vary by location. Im-
portantly, these limited data are only viewed through the lens of
differential privacy algorithms, specifically designed to protect user
anonymity and obscure fine detail. Moreover, comparisons across
rather than within locations are only descriptive since these regions
can differ in substantial ways. This data can be viewed as similar
to the data used to show how busy certain types of places are in
Google Maps — for example, helping identify when a local business
tends to be the most crowded.

We also note that there are significant other factors not captured
in any of these datasets, such as the increased prevalence of wearing
masks or changes in the weather. These factors, combined with
increased awareness, can effectively reduce the transmission even
when mobility remains unchanged. We encourage future work that
explores the addition of these external features.

4.2 Hyperparameters, Architectures, and Splits

Unless explicitly stated otherwise, for all of our GNN experiments,
we use a 7 day (i.e. one week) time horizon and look over 2 hops of
spatial data (using the 32 neighbors with the highest edge weight
for each hop). GNN models were implemented in Tensorflow. We
utilize an ADAM optimizer with learning rate set to le-5. We use
a two hop spatial model with a single layer MLP on either side.
Therefore, we have four hidden layers — an initial embedding layer,
the two hops of spatial aggregation, and the final prediction layer.
The hidden layer architecture for Wy, Wi, Wa, and W3 are [64, 32,
32, 32], respectively. Each layer has a dropout rate of 0.5, and a 12
regularization term of 5e-4. GNN models were trained for 1M steps
with a MSLE regression loss.

All models were trained to predict the change in the number
of cases on day t + 1, given previous information. We have data
from January 1st onwards; however, we do not observe cases in the
US until late February. As a result, we use data from days 59-120
(roughly, March and April, 2020) for training, and data from days
120 to 150 (roughly, May, 2020) was used for testing. For each model,
we look at the top 20 counties by population. The reported values
are averaged across all counties for all thirty days of inference.
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Figure 3: The reduction of inter-
county mobility flow for US counties,
comparing flows in April to baseline
values in the first 6 weeks of 2020.

Figure 4: The reduction of inflow for
King county from various US coun-
ties. Note that because King county
has an airport, it has direct edges to
US counties that may be physically
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Figure 5: The mobility trends for
King county. There are dramatic re-
ductions in many of the mobility cat-
egories in late March due to non-
pharmaceutical interventions like so-

distant.

4.3 Baselines

To evaluate the benefits of the GNN framework, we compare against
a range of popular methods as baselines. For all of our baselines,
we examine how region-level mobility features, such as aggregated
flows and place visit trends, affect our results. ‘No Mob’ versions
of our baselines indicate that these baselines do not utilize any
mobility information.

4.3.1 Previous Day. Next day case prediction is highly correlated
with features from the previous day. We use two previous day
baselines. For Previous Delta, we predict that the delta in the number
of cases will be the same as the delta from the previous day. For
Previous Cases, we predict that the delta in the number of cases
will be 0 (and that the actual number of cases will be the same as
the previous day). These baselines help us understand what lift, if
any, our models are able to extract from the rest of the provided
features; however, we do not treat these as ‘model‘ baselines in our
analysis.

4.3.2 ARIMA. We utilize a univariate ARIMA model that treats
the time dependent daily new cases as a univariate time series that
follows a fixed dynamic. Each day’s new case count is dependent
on the previous p days of observations and the previous g days
of estimation errors. We selected the order of the ARIMA model
using Akaike Information Criterion (AIC) and Bayesian Information
Criterion (BIC) to balance model complexity and generalization, we
minimize parameters by using a constant trend with ARIMA(7, 1, 3).

4.3.3 LSTM and Seq2Seq. Our LSTM baseline contains a stack of
two LSTM layers (with 32, 16 units respectively) and a final dense
layer. The LSTM layers encode sequential information from input
through the recurrent network. The dense connected layer takes
the final output from the second LSTM layer and outputs a vector
of size four, which is equal to the number of steps ahead predictions
needed.

The Seq2Seq model has an encoder-decoder architecture, where
the encoder is composed of a fully connected dense layer and a GRU
layer that can learn from sequential input and return a sequence of
encoded outputs in a final hidden state. The decoder is an inverse of
the encoder. The dense layer is 16 units and the GRU layer is 32 units.
To match common practice, we apply Bahdanau attention [2] on
the sequence of encoder outputs at each decoding step to make next
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step prediction. Both the LSTM and Seq2Seq models, we use a Huber
loss, an Adam optimizer with a learning rate of 0.02, and a dropout
rate of 0.2 for training, which works best in our experiments. During
inference, both models observe data from the previous 10 days in
order to make a prediction about the next day in the sequence.

4.4 Case Prediction Performance

In Table 1, we compare the forecasting performance of the spatio-
temporal GNN with a range of baseline models. We report the
RMSLE and Pearson Correlation for the predicted caseload (RMSLE,
Corr), calculated as the sum of the predicted delta and the previous
day’s cases. We aggregate the performance metrics from top 20
populated counties in US. We note that we can trivially achieve a
high correlation because the problem framing naturally relies on
the general trend of the data from time - in fact, the Previous Cases
baseline achieves the highest case correlation overall. To account
for this, we also report the RMSLE and Pearson Correlations for the
case deltas (A RMSLE, A Corr), even though we expect the ground
truth values to be confounded by unaccounted variables like the
availability of testing centers or whether it is a workday.

We find that the GNN successfully outperforms our baselines,
achieving either best or second-best score on each evaluation met-
ric. Further, we note that for all of our deep models, introducing
additional mobility data improves results. Interestingly, introducing
mobility data resulted in worse performance for the ARIMA base-
line. ARIMA assumes fixed dynamics and a linear dependence on
the county-level mobility — while this helps the ARIMA model in
the early stages of the epidemic, when there was a strong positive
correlation between reduced mobility and daily new cases, it may
cause the model to under-perform with the increase of mobility in
late May.

5 CONCLUSION

In this work we developed a graph neural network based approach
for COVID-19 forecasting with spatio-temporal mobility signals.
This modeling framework can be readily extended to regression
problems with large scale spatio-temporal data - in particular for
our case, disease status reports and human mobility patterns at
various temporal and geographical scales. In comparison to previ-
ous mechanistic or autoregressive approaches, our model does not
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Model | RMSLE ~ Corr  ARMSLE A Corr
Previous Cases 0.0226  0.9981 4.7879 NaN

Previous Delta 0.0127  0.9965 0.9697 0.1854
No Mob ARIMA 0.0124 0.9968 0.9217 0.1449
ARIMA 0.0144  0.9952 0.9624 0.0966
No Mob LSTM 0.0125  0.9978 0.9172 0.1540
LSTM 0.0121 0.9978 0.9163 0.1863
No Mob Seq2Seq | 0.0118  0.9976 0.8467 0.1020
Seq2Seq 0.0116  0.9977 0.8634 0.2802
GNN 0.0109 0.9980 0.7983 0.2230

Table 1: Summary of model performances.

rely on assumptions of the underlying disease dynamics and can
learn from a variety of data, including inter-region interaction and
region-level features.

There is still much to be done, both for COVID-19 and for model-
ing infectious disease in general; we hope that this paper sparks an
increased focus on leveraging this powerful new source of mobility
information through novel techniques in graph learning. Future
work can expand on these results by incorporating new features,
expanding the time horizon for long term predictions, and exper-
imenting on epidemiological mobility data in other parts of the
world.
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6 APPENDIX

6.1 Google COVID-19 Aggregated Mobility
Research Dataset

The Google COVID-19 Aggregated Mobility Research Dataset used
for this study is available with permission from Google LLC. The
Dataset contains anonymized mobility flows aggregated over users
who have turned on the Location History setting, which is off by
default. This is similar to the data used to show how busy certain
types of places are in Google Maps — helping identify when a local
business tends to be the most crowded. The dataset aggregates
flows of people from region to region, which is further aggregated
at the level of US county, weekly in this study.

To produce this dataset, machine learning is applied to logs data
to automatically segment it into semantic trips [3]. To provide
strong privacy guarantees, all trips were anonymized and aggre-
gated using a differentially private mechanism [30] to aggregate
flows over time>. This research is done on the resulting heavily
aggregated and differentially private data. No individual user data
was ever manually inspected, only heavily aggregated flows of large
populations were handled.
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All anonymized trips are processed in aggregate to extract their
origin and destination location and time. For example, if users
traveled from location a to location b within time interval ¢, the
corresponding cell (a, b, t) in the tensor would be n + err, where
err is Laplacian noise. The automated Laplace mechanism adds ran-
dom noise drawn from a zero mean Laplace distribution and yields
(e, 8)-differential privacy guarantee of € = 0.66 and & = 2.1 x 1072°
per metric. Specifically, for each week W and each location pair
(A, B), we compute the number of unique users who took a trip
from location A to location B during week W. To each of these
metrics, we add Laplace noise from a zero-mean distribution of
scale ﬁ. We then remove all metrics for which the noisy num-
ber of users is lower than 100, following the process described in
https://research.google/pubs/pub48778/, and publish the rest. This
yields that each metric we publish satisfies (e, y)-differential pri-
vacy with values defined above. The parameter € controls the noise
intensity in terms of its variance, while y represents the deviation
from pure e-privacy. The closer they are to zero, the stronger the
privacy guarantees.

3See https://policies.google.com/technologies/anonymization for more.
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ABSTRACT

In the absence of pharmaceutical interventions to curb the spread
of COVID-19, countries relied on a number of nonpharmaceutical
interventions to fight the first wave of the pandemic. The most
prevalent one has been stay-at-home orders, whose the goal is to
limit the physical contact between people, which consequently will
reduce the number of secondary infections generated. In this work,
we use a detailed set of mobility data to evaluate the impact that
these interventions had on alleviating the spread of the virus in the
US as measured through the COVID-19-related deaths. To estab-
lish this impact, we use the notion of Granger causality between
two time-series. We show that there is a unidirectional Granger
causality, from the median percentage of time spent daily at home
to the daily number of COVID-19-related deaths with a lag of 2
weeks. We further analyze the mobility patterns at the census block
level to identify which parts of the population might encounter
difficulties in adhering and complying with social distancing mea-
sures. This information is important, since it can consequently drive
interventions that aim at helping these parts of the population.
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1 INTRODUCTION

Since the first reported case of COVID-19 in early December 2019 in
Wuhan, China, the world has experienced dramatic changes in an
effort for societies to deal with the pandemic. Given the absence of
pharmaceutical interventions (i.e., a medical treatment or a vaccine),
governments and health officials have relied on non-pharmaceutical
interventions, including shelter-at-home orders, contact tracing and
volume testing. The reasoning behind shelter-at-home interven-
tions is to limit the physical contacts between people, which fur-
thermore limits the transmission of the virus. Given the absence of
a vaccine, this does not mean that the virus will be eradicated but
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rather, limiting people’s mobility will allow the health systems to
operate under capacity and be as effective as possible, consequently
limiting the number of fatalities.

Of course, these measures have not been without controversy.
Hence, it is important to examine whether they are effective in
achieving their goal. Using a granular mobility dataset for the US
obtained from SafeGraphs (details provided in the following sec-
tions) and COVID-19-related fatalities we show that average frac-
tion of people staying home weekly Granger-causes the number of
COVID-19-related fatalities with a 3-weeks lag. We also examined
for and did not find any evidence of bidirectional Granger causality,
ie., feedback effects of people altering their mobility as a response
to the change of the number of fatalities (e.g., as a reaction to the
news). We also provide a short-term prediction model for the num-
ber of COVID-19 related fatalities in US one-week out, using only
information about population-level mobility behavior and fatalities
over the past three weeks.

Given the effectiveness of these measures it is critical to un-
derstand who in the population complies and to what extent. Dif-
ferences in compliance levels are not necessarily by choice. For
example, many people are essential workers and hence, need to
spend time outside of their home. Others might not have to physi-
cally be at work, but they have to take care of family members living
in other households etc. Identifying these parts of the population
can provide critical information on possible policies/interventions
that could further increase compliance, without compromising the
needs of people. Therefore, in this work we build a framework
using a beta regression model to predict the percentage of time
spent daily at home within a census block based on demographic
characteristics. Using these models we can then examine various
hypotheses on whether specific demographics of interest are asso-
ciated with a change in mobility above and beyond of what was
expected from the mobility patterns prior to stay-at-home orders.
We focus on two particular demographics, age and race, and show
that show that minorities and older people, while significantly in-
creasing their stay at home, this increase is smaller compared to
that white and younger people. We further provide some possible
mechanisms that lead to this observation and show that income
disparities can explain a sizable part of this difference. The main
contributions of our work can be summarized as follows:

e Provide a Granger-causality analysis on the impact of stay-
at-home orders on COVID-19-related fatalities

e Design a framework for quantifying adherence to social
distancing according to various demographics

e Design a dynamic dashboard to visualize both the raw mo-
bility data as well as, the results from our analysis.



We believe that our work can provide critical information to local
officials and policy makers. The rest of the paper is organized as
follows. Section 2 provides a description of the data we used for our
analysis, as well as, a brief review on related to our study literature.
Section 3 provides our Granger-causality analysis, while Section 4
introduces our framework for identifying the relationship between
social distancing compliance and demographics. We conclude our
work and discuss its limitations and directions for future work in
Section 5.

2 DATA AND RELATED WORK

In this section we describe the dataset we use for our analysis, as
well as, relevant to our study literature. The code for the analysis
presented in the paper can be found on our github repository:
https://github.com/kpelechrinis/epiDAMIK20-COVID.

SafeGraph data: SafeGraph has released a detailed mobility
dataset based on the locations of about 18 million mobile phones
across the US. This information is obtained through various mobile
applications that partner with SafeGraph. This provides diverse
population coverage, while the data are provided in an aggregated
manner, with steps taken towards satisfying differential privacy
requirements. While a detailed description can be found on Safe-
Graph’s COVID-19 data consortium page [25], the main informa-
tion that we will use is the daily mobility patterns for census block
groups (CBG). In particular, for each day and each census block
group since 01/01/2020 we obtain - among other - the following
daily information:

e completely_home_device_count: This is the number of de-
vices within the CBG of interest that did not leave their home.

e distance_traveled_from_home: This is the median distance
traveled during the day from all the devices whose home is
within the CBG of interest

e median_percentage_time_home: This is the median per-
centage of time spent at home during the day from devices
whose home is within the CBG of interest

e destination_cbgs: This is the CBGs that were visited dur-
ing the day from devices whose home is within the CBG of
interest. Each destination block is also associated with the
number of devices in the SafeGraph dataset that performed
this transition.

COVID-19 data: In order to evaluate any (Granger causal) im-
pact between mobility and COVID-19-related fatalities we need to
utilize data related to the number of confirmed cases and deaths.
While an accurate number for the daily number of infections would
be the most appropriate variable for this analysis, it is widely known
that the reported numbers are a severe undercount of the actual
number of infections. On the other hand the number of fatalities
is also inaccurate but it is considered a more robust signal for the
prevalence of the disease. Albeit it is a lagged signal, with an aver-
age of 15-20 days delay [15]. We obtain our data from the NY Times
github repository [28].

COVID-19 and mobility: Excluding clinical interventions (po-
tential treatments, vaccine, etc.), limiting mobility and inter-personal
contacts has been the most central intervention in an effort to
contain the pandemic. As such, several studies have analysed the
changes in human mobility across various regions using granular
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mobility data (e.g., [4, 9, 13, 23] with the list being non-exhaustive).
Aleta et al. [2] further utilize these mobility information to drive
agent-based simulators in order to understand the impact of contact
tracing and testing on a possible second wave of the disease. Zhang
et al. [31] have further analyzed contact surveys from the early
epidemic stage in China and built transmission models to quantify
the impact of social distancing and school closures. This line of
research is of course still developing as restrictions are lifted, new
measures potentially coming in the possibility of a second wave
etc.

Public health non-pharmaceutical evaluation: Of course,
similar non-pharmaceutical interventions have been applied in the
past as well and there is a volume of research that evaluates their im-
pact. For example, Ahmed et al. [1] provide a review study on social
distancing measures in workplace. Their review includes both epi-
demiological as well as, modeling studies and they concluded that
overall workplace social distancing reduced the influenza attack rate
approximately 23%. Similarly, Rashid et al. [24] reviewed studies
that evaluated various measures (school closings, work-from-home
etc.) for dealing with the 2009 influenza pandemic. They identified
that workplace interventions provide moderate reduction in trans-
missions (20-30%). Other non-pharmaceutical interventions include
the banning of mass events. While intuitively this seems to be a
particularly effective strategy, prior literature has shown that this
is true only in combination with other interventions [12, 16]. One
of the reasons for this is the contact time at such events is relatively
small compared to the time spent in schools, workplaces, or other
community locations [7]. The literature aforementioned is not ex-
haustive. However, to the best of our knowledge, there is no study
that uses the notion of Granger causality for non-pharmaceutical
interventions. Contrary to the majority of existing studies that rely
on large-scale simulation models, or, analyzing a small case (e.g.,
a restaurant, a specific workplace etc.), we take a macroscopic ap-
proach, looking at the aggregate adherence to these interventions
and the macroscopic results (e.g., total fatalities).

3 EVALUATING SOCIAL DISTANCING

In this section we will begin by introducing the notion of Granger
causality between two time series and then we will see how it
applies to our case.

3.1 Granger Causality

Granger causality is a statistical test that aims at identifying whether
a time-series x(t) provides useful information in predicting time-
series y(t) [10]. It is eminent to understand that Granger causality is
what Granger himself described, “temporally related” or “predictive
causality”, rather than the traditional notion of causality. Simply put,
x(t) is said to Granger-cause y(1) if it precedes in time and is able
to improve the predictions of y(¢) beyond auto-regressive models.
While this might not be a useful notion for what is needed in areas
like clinical treatments, it is particularly useful and has been exten-
sively used in econometrics, public policy etc. (e.g., [3, 5, 6, 11, 18]
with the list being non-exhaustive).

Formally, the examination of whether x(#) Granger-causes (G-
causes for short) y(¢) one needs to build the following two models:
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The first model (Eq. 1) is essentially a pure auto-regressive model
on y up to lag m (called the restricted model), while the second one
includes lagged terms from the time-series x(t) to be explored as a
potential Granger cause (called the unrestricted model). Given this

setting the following null hypothesis is examined: via conducting
an F-test:
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The null here is the hypothesis that no explanatory power is
jointly added from the lags of x. So eventually, we retain all the
lagged values of x that are individually statistically significant (t-
statistic), but in order to reject Hp that x does not G-cause y, all these
lags need to add explanatory power (as compared to the restricted
model). We would like to note here that the time series need to be
stationary before performing the Granger test. Hence, if the original
data are not stationary they should be transformed to eliminate the
possibility of autocorrelation (e.g., through differentiation).

3.2 Shelter-at-home and COVID-19 fatalities

We are interested in examining whether the mobility of people in
the US G-causes the number of fatalities from COVID-19. Here,
we would like to emphasize that for the latter, we are using the
number of COVID-19 deaths ¢ reported from health authorities
as discussed in Section 2. We do not make use of any information
related to excess fatalities, or any attempt to estimate the under-
reporting factor in fatalities. For the G-cause variable, we first
obtain the fraction of devices in each census block group b that
stayed exclusively at home daily! /;. We then obtain a weighted
average value over all the CBGs, hys(t), for each day t, where the
weights are the sample size in each block. We further aggregate
the data weekly, since there are known inconsistencies and delays
in reporting cases and deaths. Weekly aggregation should remove
some of the associated noise with COVID-19 daily reports.

Figure 1 shows the two weekly time-series of interest for the
period between 01/21/2020 (when the COVID-19 cases started being
recorded) and 07/03/2020. We apply the Kwiatkowski-Phillips—
Schmidt-Shin test [14] and we identify that these time-series are
not stationary. However, differentiating both time-series will lead
to stationarity. Running the Granger causality test for lags up to 6
weeks (given the length of our time-series longer lags cannot be
tested), we obtain the results in Table 1. As we can see, there is
evidence that mobility G-causes COVID-19-related fatalities at a lag
of about 2 weeks. We also examined for bidirectional G-causality,
i.e., people listening to the news and number of fatalities, and
reacting with changes in their mobility. However, we did not find
any supporting evidence.

Given the results from our Granger causality analysis we can
build a time-series prediction model for estimating the weekly
number of fatalities in the near-future (e.g., one week ahead). We
1We also examined the median percentage of time spent at home, with similar results.

In fact, the median percentage of time spent at home and the fraction of people staying
completely at home daily are highly correlated, with a correlation coefficient p = 0.93.
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Lag

1 2 3 4 5 6
by 263.4" 156.0 236.9* 230.9% 3444  289.5*
by - 401.4** 432.7**  539.6™  447.8** 574.9*
b3 - - 348.1" 516.2  675.9"  760.1*
by - - - 186.7 —-18.1 65.1
bs - - - - 145.6 —64.3
be - - - - - -103
Adj R? 0.46 0.69 0.77 0.79 091 0.9
F-test 5.08 10.3 11.1 18.9 8.5 12.6
(pval)  (0.03)  (<0.01)  (<0.01) (<0.01) (<0.01) (<0.01)

“p <001, p <005 p<0.1
Table 1: Individual coefficients’ significance and F-test result
for various lags.

experiment with two different models, namely, a Vector AutoRe-
gression (VAR) and a Long-Short Term Memory neural network.
The VAR model is essentially the unrestricted model in the Granger-
causality test (Equation 2), where m = p = 3 Table 2 shows the
corresponding model. As we can see, increased fraction of people
staying home will result in a reduction in the predicted number of
fatalities 3 weeks ahead. We also examined a stacked LSTM archi-
tecture, with 2 layers with 50 hidden units each, followed by a dense
layer with ReLU activation. We use again a sequence of size of 3
and train the model over multiple epochs using early stopping. The
results from our two models are presented in Figure 2. In particular,
we provide predictions for the last 5 weeks (as of this writing) and
we train each model using all the data up to the week of interest.
Consequently we make our out-of-sample predictions with each
model which are overlaid with the actual fatalities. Overall, both
models perform relatively well, especially given the short span of
the time-series, as well as, the simplicity of the models in terms of
input features. We would like to note here that these models are
not appropriate for longer term predictions (e.g., fatality count in 4
months), which is the focus of most of the fatality-related prediction
models developed (https://www.cdc.gov/coronavirus/2019-ncov/
covid-data/forecasting-us.html).

4 QUANTIFYING SOCIAL DISTANCING
BEHAVIOR PER DEMOGRAPHICS

In the previous section, we saw that there is strong evidence that
limiting mobility Granger-causes fewer fatalities from COVID-19.
Therefore, it is important to understand if and which parts of the
population are not able to adhere to the guidelines. This information
is critical to be communicated to health officials and policy makers,
since it can drive interventions that will help everyone follow the
recommendations to the extent possible. In this section, we present a
framework based on a beta regression model from the daily percent-
age of time spent home and the difference-in-differences method
that can identify the relationship between demographics of interest
and the way they relate to social distancing behavior.
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Variable Coefficient p-val
hys(t —1) 137.9 0.21
hus(t —2) 252.4 0.15
hys(t-3) —384.7 <0.01
y(t-1) 135 < 0.01
y(t-2) —0.59 0.16
y(t-3) 0.19 0.40
R? 0.86
SEyes 1250

“p <001, " p <005 p<0.1
Table 2: VAR model for predicting weekly fatalities one-
week-out.

4.1 Beta regression model

Our goal is to model the percentage of time hp that a specific
population # spends home daily. Given that our dependent variable
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he is real-valued, bounded in the unit interval a linear regression is
not an appropriate model. Hence, we choose to use a beta regression
model [8], where essentially the data are assumed to follow a beta
distribution. A useful parametrization of the beta distribution for
this type of models is given by:

~ I'(¢)
f(ylu. ¢) = T(ud) -T((1—p)(9))

where p is the mean of the beta distribution and ¢ is a parameter
called precision. ¢ controls the variance of the distribution; for a
fixed p, higher precision leads to smaller variance. With this setting
the beta regression model for hAp is:

y#¢—1(1 _ y)(l—ﬂ)¢—1 )

©)

where hp is the average daily fraction of time spent home for
P, xp is the vector of the model’s covariates, b is the vector of
the regression’s coefficients and ¢(-) is a link function (strictly
increasing and twice differentiable). This model is very similar
to a generalized linear model (e.g., logistic, Poisson or negative

g(l_‘lp)ZX;'b+6



binomial regression) and it is solved through a Maximum Likelihood
Estimation (MLE). The MLE identifies the coefficients b, but also
the precision parameter ¢, which is a constant and not a function
of xp2.

4.2 Demographics Analysis

In this section we will begin by modeling the fraction of time spent
at home daily in each census block as a function of specific de-
mographics of the population. We start with race, where census
data provide information on the percentage of people within each
census block that belong to the following categories: White, Black,
Hispanic, Asian, American Indian or Native Alaskan, and Other
races>. Since we want to estimate the relationship between these
demographics and the changes observed after the social distancing
recommendations, we build two separate models; one that captures
the mobility prior to stay-at-home orders (Mpye) and one that cap-
tures mobility after these orders were put in place (Mpos;). One of
the problems is that different parts of the country put these mea-
sures in place in different times through the course of the pandemic.
Given that the majority of the orders were put in place sometime
within March 2020, we build Mpre using data from February 2020,
and Mpos; using data from April 2020. Table 3 presents the results
of these regressions. Using these results we can start examining the
average percentage of time spent daily at home by the population
of a hypothetic census block group (HCBG) with a specific racial
demographic composition. For example, Figure 3 presents the beta
distribution for racially homogeneous (hypothetical) census block
groups. As we can see, there are differences across these hypothet-
ical census block groups, both for the same time period, as well
as, their shift as the stay-at-home orders were put in place. More
specifically, Table 4 presents the average stay home percentage for
each of the hypothetical blocks.

Variable Mpre Mpast
White% —0.45""*  —0.48™**
Black% —0.27"*  —0.56™**

Hispanic% 0.29%**  0.39"**
Asian% —0.40%** 1,87

Natives+Others% —0.51"** —0.93"**

constant 1.39™* 2.5%%

¢ 145 5.8
N 201,917 201,917

p <001, p <005 p<0.1
Table 3: Beta regression model for the average daily percent-
age of time of stay home at a census block group before
(02/20) and after (04/20) stay-at-home orders.

Table 4, while providing us with a quick view of how specific
parts of the population might comply with the social distancing
recommendations (in terms of staying home), it does not provide the

“There are extensions of this model [26] that models the precision as a function of a
,

set of regressions z,i.e, g (§) = zlc+e

3For the purposes of our analysis we merge the American Indian and Native Alaskan

category with the Other races category.
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Hypothetical Block Pre Post
White 71.8% 89.6%

Black 75.6% 88.6%
Hispanic 84.4% 94.9%

Asian 72.9% 98.9%
Natives+Others 70.7%  84.8%

Table 4: Percentage of time spent home daily for hypotheti-
cal racially homogeneous census block groups based on the
beta regression models from Table 3.

whole picture. In particular, we can see that different demographics
are associated with different levels of mobility outside of their home
even before the stay-at-home order. So any change observed after
the orders were put in place, they need to be compared with the
original difference. This process is visualized in Figure 5, where
we see two populations P and P, with their pre-lockdown daily
percentage of staying home, as well as, their post-lockdown daily
percentage of staying home. While Ay provides us with information
about what is happening in the two populations after the stay-at-
home orders were put in place, it does not adjust for the behavior
of the two populations prior to the intervention, and the difference
d(P1, P2) = Az —Aq is more informative. Hence, in order to identify
demographic discrepancies between two populations, £; and Pz, in
complying with stay-at-home orders, we performed the following
hypothesis test:

Hy :
H:

5(P1,P2) =0
8(P1,P2) # 0

(6)
™)

In order to perform this test, we use the full beta distribution
for each population-time combination and repeatedly sample them
to build the distribution of §(%1,%2). Then we can perform the
above hypothesis test. Table 5 presents the results for the various
comparisons between the minority HCBG and the white one. As we
can see all minority HCBG - except the Asian one - exhibit a smaller
increase as what was expected based on their pre-intervention pat-
terns. Particularly interesting is the case of the Hispanic HCBG,
which even though exhibits the second highest daily percentage
of staying home after the stay-at-home orders, the observed in-
crease is smaller as compared to the white HCBG. Furthermore,
it is interesting that the Asian HCBG exhibits a 7.5% higher com-
pliance as compared to the white HCBG. While the reasons for
this are not clear - and we cannot identify them through the data
we have - there are a few reasons that are plausible, including the
increase of racist attacks targeting Asians in the US at the wake of
the pandemic [19-22, 29, 30].

While for the Asian population, staying at home more might
also be a way of avoiding racist attacks, the question remains, why
are there discrepancies for the rest of the minorities as compared to
the white HCBG ? One plausible explanation is that a large fraction
of these minorities are essential workers and while overall they
increase their stay at home, they really need to go to their work.
Another possible reason is that minorities live in inner cities and as
such they are close to their families. Furthermore, these minorities
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P P 6(P1.P2)

Black White —4.8%***

Hispanic White —6.2%""*
Asian White  7.5%"*

Natives+Others White —3.6%***

Mp < 0.01, Hp < 0.05, *p <0.1
Table 5: Minority HCBGs exhibit lower percentage of stay-
at-home, as compared to white HCBGs.

have come to rely and support their extended families [27] and
hence, they might be providing them with help (e.g., childcare sup-
port for essential workers etc.) during this time, leading to higher
mobility outside the home. Other plausible reasons include the rela-
tionship between these groups and technology. In particular, ethnic
minorities have traditionally been slower in adopting new technol-
ogy for a variety of reasons [17] and this could mean in a situation
like the current pandemic, their inability or unwillingness to use
online platforms for essential errands such as grocery shopping.
While we cannot show with our current data whether any of these
plausible reasons are in play, we can examine one additional factor
that is relevant to all of the above possibilities; their median income.
Low income families typically live in inner-city and are of ethnic mi-
norities, they have issues with accessing and adopting technology,
while many of the essential workers are low-paid employees (e.g.,
grocery store workers, delivery, etc.). Tables 6 and 7 present the
same results when we adjust for the median income of an HCBG.
As we can see, the mobility differences between black and white
HCBGs, as well as native and other minorities and white HCBGs,
disappears, while for Hispanic and Asian HCBGs the differences
are reduced.

We also examined another demographic attribute, namely, age.
While census provides a breakdown of the age of a census block
group in several age brackets, we aggregated them into two bins;
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Variable Mpre Mpost
White% —0.43*** —0.61***
Black% —0.29™ —0.3%**

Hispanic% 0.27*** 0.7%**
Asian% —0.29™** 0.87***

Natives+Others% —0.52%% —0.79%**
Median Income  —9.9- 1077 *** 9.9.1070 ***
constant 1.43%* 2.13%%
P 14.6 6.34
N 201,917 201,917

“p <001, p <005 p<o.1
Table 6: Beta regression model for the average daily percent-
age of time of stay home at a census block group before
(02/20) and after (04/20) stay-at-home orders adjusting for
median income (expressed in thousands of $s) in the CBGs.

P Py 5(P1,P2)
Black White  6-1074%
Hispanic White — —4.3%***
Asian White 5.7%***

Natives+Others White —5-1073%

Wp < 0.01, Mp < 0.05, *p <0.1
Table 7: When adjusting for income a large percentage of the
mobility differences between HCBGs during stay-at-home
orders is explained.

younger or older than 50 year old*. Again, we build a beta regres-
sion model with the same dependent variable as before but the

4Obviously one can repeat the analysis with more bins, but we wanted to keep things
simpler mainly for presentation purposes.



independent variable is the percentage of the population in the
CBG that is older than 50 years old. The results are presented in
Table 8, where as we can see the older population is associated with
a reduced stay-at-home daily time as compared to younger popula-
tion (less than 50). Figure 4 further visualizes the beta distributions
for hypothetical CBGs with only population older or younger than
50 years old. Furthermore, by performing a similar hypothesis test
as in Eq. (6)-(7), we find that the HCBG with population older than
50 years old stays at home 2.6% (p-val < 0.01) less time at home
on average as compare to younger population and based on their
pre-intervention patterns. In contrast to the race case, when adjust-
ing for the median income, the difference remains (-2.5%, p-val <
0.01). A potential reason for this difference between population in
the opposite side of the 50 years old mark, can be their technology
fluency. Younger people that are avid users of (mobile) technology
can take advantage of various services that can help people com-
plete their errands (e.g., grocery shopping), while staying at home.
This might not be the case for older people (at least to the same
extent). Again, while this is a plausible mechanism that can drive
the observed difference, the data in our disposal does not allow us
to further examine this.

Variable My, Mpost
Older50% 0.09™**  —0.28™**
constant  0.98™**  2.39™**
¢ 14.2 5.5
N 201,917 201,917

“p <001, " p <005 p<0.1
Table 8: Beta regression model for the average daily percent-
age of time of stay home at a census block group before
(02/20) and after (04/20) stay-at-home orders based on the
percentage of the population that are older than 50 years
old.

4.3 Dashboard

We have also created a dashboard to visualize this mobility informa-
tion in an interactive manner®. Figure 6 presents a screenshot from
the dashboard that depicts the census block tracts of Allegheny
County on the left half. The user can choose a tract (the selected
tract will be colored red as in the figure) and information about
the outgoing mobility (i.e., movements of people whose home CBG
is the selected one) and incoming mobility (i.e., movements from
people whose home CBG is not the selected one but they visited
it) associated with it is presented. The choice between outgoing
and incoming mobility can be made through the control buttons
above the map. For example, in Figure 6 outgoing mobility infor-
mation for people whose home CBG is the selected origin CBG
(420035231001) is presented on the map. The color for each census
block group tract i represents the fraction of the total foot traffic
from the residents of the origin CBG, over the period selected from
the user®, that visited CBG i. On the right half of the figure, there

Shttp://mobility.pittsmartliving.com/.
The user can select the time period through the slider under the map.
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Figure 5: When comparing the mobility post-lockdown for
different populations, we need to consider the pre-lockdown
mobility as well.

are two time-series depicted that provide temporal information for
the CBG that the user is currently hovering over (say CBGp,). In the
specific situation depicted here, this is CBG 420035231001. The top
time series provides the daily number of visits in CBGy, from the
origin CBG, while the bottom time series represents the fraction of
time residents of CBGy, spent at home. It is interesting here to note
that if we hover over the origin CGB, i.e., CBGy is the selected CBG,
then the top time-series represents self-loops. That is, traffic from
residents of the CBG that was destined to other venues/points of
interest within the CBG. Finally, we also present a table with some
basic demographic information about the origin CBG related to
our analysis, such as racial and age composition of the population,
median income and total population.

We would also like to note here that this dashboard is still work-
in-progress in the sense that new features are being added prior

Date



Date Range 01 Jan 2019 .. 26 May 2020

Census Data for CBG 420035231001

Mobility from CBG 420035231001 to CBG 420039800001

1 T T T

&3 e Population 1.387
| Median
] l Income 845284
] <18 19.3%
314 18-29 23.1%
' Age 3049 20.1%
" 50-69 28.7%
3 70+ 8.7%
1 White 10.8%
201 201 w e . Black 74.2%
t American i
<o Indi 0.0%
Median time spent home in CEG 420039800001 indian
Qo Race Asian 2.8%
Pacific o
| islander 0%
Other 0.8%
Multiple  11.4%

Figure 6: Our dashboard for Allegheny County showing the outgoing mobility from the selected CBG (red) alongside with de-
mographic information. The two time-series plots further provide information related to the interaction between the selected

CBG and another CBG that the user hovers over.

to going publicly live. For example, our immediate future plan is
to visualize information about specific businesses and their geo-
graphical reach (i.e., where do customers of different establishments
come from?). This information can be very helpful for local health
authorities when identifying a plan for interventions and the corre-
sponding protocols.

5 CONCLUSIONS AND DISCUSSION

In this study we perform a macroscopic analysis of the effectiveness
of social distancing measures in the US during the COVID-19 pan-
demic using the notion of Granger causality. Our analysis indicate
that the average daily fraction of population staying completely
at home Granger-causes the number of COVID-19 fatalities in a
3-week period. We further examine the presence of bidirectional
Granger causality and we do not find any supporting evidence.
Using this observation, we also build two simple prediction models
for weekly COVID-19-related fatalities, using auto-regressive and
mobility features. We further provide a framework to identify the
relationship between demographics and social distancing behavior.
While this analysis does not provide causal relationships, it can
certainly provide important information for policy makers while
thinking of ways to increase compliance. Finally, we provide a visu-
alization dashboard with the raw data as well as, the results from
our analysis. This dashboard is constantly being updated with new
results and data.

We would like to emphasize here that even though we have
included a prediction model in our analysis, this is only to showcase
in practise the conclusions from the Granger causality analysis’.

"Furthermore, there are several well-performing prediction models in the public sphere
- tracked by CDC as well - and our goal is certainly not to add yet another model.
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Furthermore, while the model performs well out-of-sample, several
improvements can be achieved by including even more informative
features. For instance, just an aggregate number of how many
hours a person spends out of their home does not capture factors
important for the prediction of infections. Was this movement to a
high-risk location (e.g., a grocery store) or was it for a stroll around
the neighborhood? Disentangling this is certainly not trivial and
we are working in methods for identifying the number of potential
contacts a person from a specific CBG is expected to have based on
their mobility and the POI foot traffic data. Furthermore, it will be
particularly useful to extend our analysis to a more (spatially) fine
granularity, focusing on a microscopic analysis (e.g., at the county,
or city, level). This will allow us to identify the exact time points of
interventions and possibly attempt to extract causal relationships
using quasi-experimental methods, such as instrumental variables
and difference-in-differences.
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ABSTRACT ACM Reference Format:

Pulmonary diseases impact millions of lives globally and annually.
The recent outbreak of the pandemic of the COVID-19, a novel
pulmonary infection, has more than ever brought the attention of
the research community to the machine-aided diagnosis of respi-
ratory problems. This paper is thus an effort to exploit machine
learning for classification of respiratory problems and proposes a
framework that employs as much correlated information (auditory
and demographic information in this work) as a dataset provides to
increase the sensitivity and specificity of a diagnosing system. First,
we use deep convolutional neural networks (DCNNSs) to process
and classify a publicly released pulmonary auditory dataset, and
then we take advantage of the existing demographic information
within the dataset and show that the accuracy of the pulmonary
classification increases by 5% when trained on the auditory infor-
mation in conjunction with the demographic information. Since
the demographic data can be extracted using computer vision, we
suggest using another parallel DCNN to estimate the demographic
information of the subject under test visioned by the processing
computer. Lastly, as a proposition to bring the healthcare system
to users’ fingertips, we measure deployment characteristics of the
auditory DCNN model onto processing components of an NVIDIA
TX2 development board.
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systems organization — Sensor networks.

KEYWORDS

respiratory sounds dataset, demographic feature extraction, deep
convolutional neural networks, embedded devices, early-stage di-
agnosis, public health

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

epiDAMIK 2020, Aug 24, 2020, San Diego, CA

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-xxxx-XXXX-X...$15.00

https://doi.org/

XXX, XX.XXXX:

34

Morteza Hosseini, Haoran Ren, Hasib-Al Rashid, Arnab Neelim Mazumder,
Bharat Prakash, and Tinoosh Mohsenin. 2020. Neural Networks for Pul-
monary Disease Diagnosis using Auditory and Demographic Information.
In epiDAMIK 2020: 3rd epiDAMIK ACM SIGKDD International Workshop on
Epidemiology meets Data Mining and Knowledge Discovery. ACM, New York,
NY, USA, 5 pages. https://doi.org/xx.xxxx/XXXXXXXXX.XXXXXXX

1 INTRODUCTION

In 2016, pulmonary diseases were among the top 10 causes of death:
ranked 1 for low-income and ranked 5 for high-income countries [1].
Recently, with the outbreak of the COVID-19 as a novel pulmonary
infection, a tremendous amount of attention has been directed to
control the pandemic crisis about which extreme measures are
taken by countries to diagnose the infected patients. Measures
such as extensive testing and early-stage diagnosis help to locate
and contain the infection, and are reportedly the most effective
preventive actions to control the contagion in a pandemic.

Pulmonary problems encompass a wide range of chronic and in-
fectious diseases, and because of the common organ, lung, that they
affect, they develop respiratory symptoms whose auditory signals
recorded from various medical devices are among the first to be
scrutinized by a medical expert. As an example, COVID-19 develops
symptoms such as dry cough, fever, fatigue, dyspnea, and shortness
of breath that vary in severity at different stages of the disease
progression, and correlate with certain ethnicity, gender, and age
groups differently [11]. More than 70% of the confirmed COVID-
19 patients have reported fever in tandem with a dry cough [24].
Meanwhile, clinical case records indicate that the young population
is less likely to develop COVID-19 relevant symptoms, contrary to
the elderly that is the most vulnerable group [10].

Traditionally, when someone feels symptoms, they either call
a doctor or have themselves seen/scrutinized by medical experts
at walk-in clinics, where extensive use of vital signs, visual and
auditory information are applied to make diagnostic decisions.
Such practice during a pandemic or in remote locations is unsuit-
able/impractical as a result of the limited capacity of existing fa-
cilities and human resources at health centers, and, ironically, can
expedite spreading the infection. On the other hand, calls are made
by governments/organizations during the pandemic for people to
stay at home that, by itself, has caused a state of confusion and
has made another barrier. Thus, early-stage and clinic independent
machine assistance is critical for the initial diagnosis of the disease
and/or for evaluating/assessing its severity.
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Figure 1: The proposed framework to classify respiratory problem has two DCNN components that process data from a user
under test. Part of the information is auditory, such as the audio sound recorded from a medical electronic device like a
microphone or a stethoscope, and part of that information is the demographic information, such as age, gender, and ethnicity,
that can either be estimated using a computer vision algorithm or inserted manually. The framework is flexible and scalable
in the sense that it can incorporate new sensors easily, allowing the system to be tailored to a variety of kinds of situations,
such as in-home consultations, clinical visits, or even symptom detection in public milieus using non-contact sensors.

Our goal in this research is to allow machine learning algorithms
running on general computing processors (e.g., those in cell-phones
and tablets) to assess patients similar to what doctors do at triage
and telemedicine, using passively recorded audio and/or video and
self-declared information, to bring proactive healthcare to users’
fingertips and to estimate the urgency/necessity of whether they
need to attend clinics and have themselves further examined with
the use of more specialized test-kits or facilities. Our vision is to
provide a detection framework that can provide early detection
for anyone and anywhere. We develop our work on a publicly
released respiratory sound database that includes both auditory
and demographic information recorded from 126 subjects covering
7 pulmonary diseases including healthy condition, and with two
sets of annotations. More specifically, since the respiratory sound
dataset includes the two types of information per patient, we exam-
ine how the lack/existence of the demographic information impacts
the total accuracy of the model. For further compilation, we develop
another deep neural network that estimates demographic informa-
tion including the age and the gender of the captured images and to
correlate them with the auditory signals recorded from the subject
under test in order to assess a higher sensitivity and specificity rate
of diagnosis. The main contributions of this work include:

o Statistically analyze the information in a public respiratory
sound database, to justify extracting a reasonably balanced
dataset out of it.

o Train a DCNN on the extracted auditory dataset without con-
sidering the demographic information.

e Train another DCNN model on a face images dataset anno-
tated with age, gender, and ethnicity so to estimate/extract
demographic information of a subject visioned by a computer.

e Train the auditory dataset in conjunction with the demo-
graphic information.

o Deploy the first DCNN model to TX2 embedded system and
measure its implementation characteristics for CPU and GPU.
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2 RELATED WORK

With the advancement of machine learning and deep learning algo-
rithms, audio-based biomedical diagnosis and anomaly detection
have recently become an active area of research. Some important
aspects of audio-based diagnosis using deep learning include detec-
tion of sleep apnea, recognition of cough tone, and classification of
heart sound, to name a few. Early research [8] shows that machine
learning (ML) tools on a limited unpublished dataset can distinguish
solely between coughs from COVID-19 patients and those who are
healthy or with upper-respiratory coughs with high accuracy of
96.8%. [7] introduces End to End convolutional neural networks
for cough and dyspnea detection. Authors in [3] used both DCNNs
and recurrent neural networks (RNNs) to classify cough sound
that they collected using chest-mounted sensors. Authors in [14]
used deep learning to detect sleep apnea. Classification of heart
sound into normal and abnormal classes was conducted in [20]
using DCNNs. Authors in [4] and [16] used DCNNs and RNNs to
classify lung sounds respectively. Most of these works report high
levels of accuracy on unpublished datasets that are accessible by
the research community. The 2017 International Conference on
Biomedical Health Informatics (ICBHI) [18] issued a benchmark
dataset of respiratory sound to facilitate researching on respiratory
sound classification. Since then, researchers proposed various al-
gorithms [5, 12, 15, 17] using different deep learning techniques to
classify respiratory cycle anomalies such as the precise locations of
wheezes and crackles within the cycle of each respiratory sound
recording. In [13] authors showed innovativeness by proposing a
digital stethoscope to provide an immediate diagnosis of respira-
tory diseases. They developed a modified bi-ResNet architecture
using STFT and wavelet feature extraction. Log quantized deep
CNN-RNN based model for respiratory sound classification was
proposed in [2] for memory limited wearable devices.
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Figure 2: Statistics of the respiratory sound database that contains auditory samples from 126 patients, A) a 2D histogram of
7 pulmonary classes with respect to 10 age groups, B) Break-down of the pulmonary classes in the dataset, C) Break-down of
each pulmonary class with respect to age groups, D) Break-down of each pulmonary class with respect to the four recording
medical devices, E) Our selection of 52 and 11 individual subjects for train and test datasets respectively that cover 5 pulmonary

classes recorded with Meditron Electronic Stethoscope.

3 PROPOSED METHOD

The framework, depicted in Fig. 1, leverages audio/video to extract
necessary and medically relevant information and combines the
extracted features with other inserted/self-declared patient data.
The audio processing incorporates an ML approach such as a DCNN
that extracts symptomatic features like crackles and wheezes of lung
sounds from a given window of recorded sound of a subject under
test. At the video processing path, the captured RGB images are
given to a ResNet-34 DCNN to process and estimate the user’s other
demographic and symptomatic features such as age and gender.
The extracted audio/video features along with the other relevant
inserted data are concatenated towards the final layers and with
the addition of a few more neural network layers or an ensemble of
classifiers in the last layer, a probability vector of diagnosis for the
user under test is reported. Both audio/video data can extend the
scope of the clinical-reported symptoms to more diverse features
that may be invisible to a human’s perception. For example, when
listened by a trained machine, the features extracted from the sound
of a patient’s cough can include more useful features beyond terms
like “dry” or “productive” that are commonly reported in clinical
case records.

3.1 Datasets

3.1.1 Respiratory Sound Database. For the auditory dataset, we
used a public respiratory sound database [19], which includes 920
recordings acquired from 126 participants annotated with 8 types
of respiratory conditions including URTI, Healthy, Asthma, COPD,
LRTI, Bronchiectasis, Pneumonia, and Bronchiolitis. The recordings
were collected using four types of medical equipment including
AKG C417L Microphone, 3M Littmann Classic II SE Stethoscope,
3M Littmann 3200 Electronic Stethoscope, and Welch Allyn Med-
itron Master Elite Electronic Stethoscope. The duration of each
recording range from 10 to 90 seconds mostly dominated with 20s
samples. Fig. 2-A, B, and C plot the distribution of the subjects
with respect to their diagnosed disease and the age groups they
impact, and Fig. 2-D shows the contribution of each of the 4 medical
devices for recordings from participants. Among the four recording
devices, the Meditron Electronic Stethoscope is the only device that
encompasses the 8 pulmonary conditions except for the Asthma,
and is used for 63 out of the 126 participants. The recordings from
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Table 1: Selected semi-balanced Dataset out of the respira-
tory sound database. Meditron recordings from 61 patients
that include 5 pulmonary classes were selected and the 20s
sounds were chopped into overlapping frames of 5s. The to-
tal dataset of frames includes 1968 samples that were split
into mutually-subject-exclusive between train (81%) and test
(19%) subsets.

Selected Dataset URTI | Healthy | COPD | Bronchiec. | Bronchiol. | Total
# Subject 12 24 6 5 5 52
Train Duration (S) 380 560 580 260 220 2000
Set # Respiratory Cycles | 207 257 406 88 141 1099
# Augmented Frames | 304 448 464 208 176 1600
# Subject 2 4 2 2 1 9
Test Duration (S) 80 140 140 60 40 460
Set | # Respiratory Cycles 26 48 119 17 16 226
# Augmented Frames 64 112 112 48 32 368

the other 3 devices are majorly taken from COPD-diagnosed par-
ticipants. By eliminating Asthma, Pneumonia, and LRTI that have
little or no samples within the Meditron recordings, we extracted
a random subset encompassing all 63 participants and split it into
a semi-balanced train and a test set of 52 and 11 participants that
include 5 types of pulmonary classes. Fig. 2-E shows a plot of the
selected train/test dataset based on the total duration of each class.
The database is meanwhile provided with demographic informa-
tion of the 126 participants and another annotation that marks
begin/end of respiratory cycles and the precise locations of events
of crackles and wheezes per recording. Based on the second annota-
tion, we counted the total number of respiratory cycles to estimate
the slowest and average respiratory cycles within the dataset and to
decide on a window size to cut the recordings into smaller frames.
Table 1 summarized the number of subjects, duration of recordings,
and the number of respiratory cycles per pulmonary class within
both train and test datasets.

3.1.2  Face Images Database. UTKFace dataset [23] is a large-scale
dataset consisting of over 20,000 face images with annotations of
age (ranging from 0 to 116 years old) gender, and ethnicity. In
[9], the UTKFace dataset is trained on a ResNet-34 [6], and we
reproduced the results of training over ResNet-34, and report the
accuracy it gives for precise age as well as for the age group of a
random split of 20% test data.



Table 2: The classification accuracy and the model complex-
ity of a ResNet-34 DCNN that extracts demographic infor-
mation on the UTKface test dataset.

DCNN characteristics
Model [ #params
ResNet-34 | 21M

Test accuracy
Aget5 Agex10 |
65.5% 87.1% |

FLOPs
3.6B

Age+0
19.6%

Gender
90.3%

3.2 Data Pre-processing and Augmentation

For data augmentation of the respiratory sound database, every
recorded audio sample is cut into frames with a duration of 5s and
with a stride of 1s, which means every two adjacent frames overlap
a duration of 4s, and every 20s recorded sample results in 16 5s
frames. Therefore the total 2000 seconds of the training dataset
generates 1600 frames, and the total 460s testing data generates
368 frames of 5s samples. The choice of the 5s frames is inferred
empirically by experiencing frames ranging from 1s to 10s.

For the data augmentation of the UTKface images, we use com-
mon image augmentation techniques such as flipping, shifting and
resizing the images within the dataset.

4 EXPERIMENTAL SETUP

We used a ResNet-34 DCNN [6] for the UTKface RGB images of
size 200%x200, and an EnvNet-like [22] DCNN for the respiratory
sound frames of size 1x220500. For the EnvNet-like DCNN, the
input from the audio recordings is a one-dimensional vector where
the size depends on the window selected for the framework. To
best utilize the one-dimensional input, we use two one dimensional
convolution layers to extract relevant features with a follow up of
non-overlapping max-pooling operation to downsample the feature
map. The subsequent layers include two-dimensional convolutional
layers with max-pooling layers in between for efficient classification
of the diseases. Finally, the fully connected layers summarize the
required feature information and feed it to the extended model to
generate a generalized output that classifies 5 types of pulmonary
conditions as in our extracted dataset.

4.1 Demographic Classification

4.1.1 ResNet-34 for UTKFace.

The classification accuracy of age and gender estimation of ResNet-
34 is reported in Table 2. Although the DCNN model does not
precisely classify the age within the test dataset, it is able to clas-
sify the gender and estimate the age groups when the range of
the groups expands. This is in correspondence to combining the
auditory data with the age group, as conducted and reported in the
next subsection where we combine the auditory information with
the age group of the subjects, rather than the precise age of each
participant.

4.2 Auditory Classification

4.2.1 EnvNet for Respiratory Sound and Demographic Information.

We first conduct a set of experiments to explore the best DCNN
configuration based on the EnvNet DCNN that achieves the highest
accuracy. Then, we combined the audio dataset with the age groups
they are recorded from as depicted in Fig. 1. Table 3 compares the
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Table 3: Respiratory sound classification accuracy and
model complexity with and without taking the demographic
information into account.

DCNN characteristics

Model
EnvNet-like on Sound
w/o Demographic Info
EnvNet-like on Sound
with Demographic Info

Sensitivity
#params FLOPs|URTI Healthy COPD Bronchiec. Bronchiol.

Accuracy
Test

320k 0.194B| 21%  68% 96% 88% 4% 78%

320k 0.194B[ 16% 72%  100% 88% 15% 83%

Table 4: Deploying the EnvNet model to commercial off-the-
shelf devices including a dual-core Denver CPU, a quad-core
ARM A57 CPU, and a combination of ARM CPU + Pascal
GPU from the NVIDIA TX2 board.

Configuration CPU Freq. | GPU Freq. | Power | Latency | Performance | Energy | Energy Eff
ontiguratio (MHz) (MHz) | mW) | () (GFLOP/S) O | (GFLOPS/W)
345 B 881 10.0 0.019 881 0.021
Denver CPU 2035 3170 | 09 0215 235 0.068
. 345 1168 37 0.052 432 0.045
ARMAST CPU —r35 5 4425 06 0322 266 0.073
TX2 CPU+GPU | 2035 13005 | 9106 0.1 1.935 091 0.210

two sets of experiments, indicating that the COPD and healthy con-
ditions are diagnosed with higher accuracy and resulting in a total
test accuracy increase by 5% when the demographic information is
taken into account.

5 COMMERCIAL OFF-THE-SHELF DEVICE
DEPLOYMENT

The framework is intended to be flexibly deployable for general-
purpose devices where the developed ML models trained on the
framework can be deployed onto processing machines that may
range from front-end edge devices to back-end computer servers.
Trading off between the computation complexity and the classifica-
tion accuracy, trained ML models can be deployed to edge devices
(e.g. a cell-phone, tablet) to process data locally if the information
privacy is a concern, or otherwise to the cloud servers that can pro-
cess data with more elaborate up-to-date models that yield higher
quality metrics.

All of the DCNN models are attributed to at least two hardware-
level characteristics: the model size and the number of computer
operations per inference, both of which are upper-bounded by the
platform resources that they deploy to, or by the inference dead-
line. When putting all the components of the framework together,
both the hardware resource constraints and the diagnosis latency
should meet the application goals. Having set the batch-size equal
to 1, the trained models obtained from the previous Section are
deployed on two mobile CPUs including Denver (dual-core) and
ARM-Cortex A57 (quad-core) as well as an embedded CPU+GPU
implementation with different frequency settings. All of the set-
tings were performed on the TX2 development board that provides
precise on-board power measurement. Table 4 summarizes the im-
plementation, indicating that, provided a 5s frame of recording
to the memory, the least power dissipating implementation (Den-
ver with a low frequency) takes 10 seconds to classify one frame
whereas the most energy-efficient implementation (CPU+GPU) dis-
sipates approximately 10X more power to classify the same frame
within 0.1 seconds.



Table 5: Comparison to the Related Work

Related #Augmented Audio Samples within the Dataset Test
Work [ URTI | Healthy | COPD | Bronchiec. | Bronchiol. | Asthma | LRTI | Pneum. | Accuracy

[21] 403 455 10,205 377 - 13 26 481 97%

This Work | 370 560 567 256 208 - - - 83%

6 COMPARISON

The most related work to ours that has developed a DCNN on the
same respiratory sound database is the work in [21] that reports an
overall accuracy of 97%. The main difference between the two works
is that our model uses additional information in tandem with the
audio data and proposes a framework that suggests combining as
much existing correlated information within the dataset as possible
to rectify and increase the diagnosis accuracy. The other differ-
ence is that our selected dataset is semi-balanced among 5 classes
of respiratory sounds recorded from one unique medical device
that has been indistinguishably utilized for 61 subjects diagnosed
with 7 out of 8 classes within the database, whereas the dataset
selection in [21] is excessively dominated with COPD recordings,
a major portion of which, as depicted in Fig. 2-D, are recorded by
two medical devices that have been used to merely sample from
COPD-diagnosed participants. Table 5 provides a comparison and
a summary of the total number of augmented samples per class
within the two works.

7 CONCLUSION

In an attempt to exploit machine learning algorithms to classify
respiratory problems, we proposed a framework that employs as
much correlated information as a dataset provides and showed
that with combining both auditory and demographic information
for a selection of reasonably balanced dataset out of a publicly
released respiratory sound database the diagnosis accuracy of the
trained deep convolutional neural networks (DCNNs) increases by
5%. Since the demographic data can be extracted and estimated
using computer vision, we suggest using another DCNN that works
in parallel to the auditory signal processing DCNN to estimate
the demographic information of the subject under test. Lastly, we
deploy our DCNN models on a dual-core Denver CPU, a quad-
core ARM Cortex A57, and a heterogeneous implementation of
CPU+GPU from the NVIDIA TX2 development board to measure
hardware characteristics when deploying the model to an embedded
device.
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ABSTRACT

Epidemiological models have provided valuable information for
the outlook of COVID-19 pandemic and relative impact of different
mitigation scenarios. However, more accurate forecasts are often
needed at near term for planning and staffing. We present our early
results from a systemic analysis of short-term adjustment of
epidemiological modeling of COVID 19 pandemic in US during
March-April 2020. Our analysis includes the importance of various
types of features for short term adjustment of the predictions. In
addition, we explore the potential of data augmentation to address
the data limitation for an emerging pandemic. Following published
literature, we employ data augmentation via clustering of regions
and evaluate a number of clustering strategies to identify early
patterns from the data.

From our early analysis, we used CovidActNow as our underlying
epidemiological model and found that the most impactful features
for the one-day prediction horizon are population density, workers
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in commuting flow, number of deaths in the day prior to prediction
date, and the autoregressive features of new COVID-19 cases from
three previous dates of the prediction. Interestingly, we also found
that counties clustered with New York County resulted in best

preforming model with maximum of R’= 0.90 and minimum of
R’= 0.85 for state-based and COVID-based clustering strategy,
respectively.
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INTRODUCTION

The novel Coronavirus, SARS-CoV-2, was first detected in
Wuhan, China on December 31, 2019 and by early January 2020,
it spread to 21 countries. The first case in the United States (US)
was reported on January 21, 2020 in Snohomish County in the state
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of Washington [1]. By the middle of March 2020, the number of
COVID-19 infected cases started to peak up in the US [2], inducing
panic about potential shortages of hospital capacities and supplies.

As more cases were detected in the US, many epidemiological
models, which had been mainly developed for other pandemics
such as influenza and season-long forecasting, started to adjust to
and project COVID-19 growth patterns. Due to the critical role of
forecasting COVID-19 in helping policymaker for future planning,
the Center of Disease Control and Prevention (CDC) has initiated
an effort for forecasting in form of challenge with the participation
of several of the epidemiological models [3].

Although overall epidemiological models have been useful for
understanding the future outlook of COVID-19 pandemic, they
often have been criticized for overestimating the projections and
inducing uncertainties [4]. The limitations in predicting future
cases of COVID-19 stems from a combination of limited
understanding and a lack of data about its infectious spread pattern
due to its novel nature. Beside data limitations, region-specific
factors were often not accounted-for in many published
epidemiological models of the COVID-19 pandemic. Factors such
as age distribution, comorbidities, and pre-excising conditions, as
well as socioeconomic factors, are expected to play role in the
severity and duration of this disease.

Given the importance of COVID-19 forecasting and considering
the majority of epidemiological models are best suited for long-
term projections, in this work rather than developing a new
forecasting model, we aim at improving the overestimated
projected numbers from epidemiological models on a short-term
basis based on machine learning. In particular, we conducted a
systematic analysis to study the importance of various data
elements for our short-term prediction. Our predictive modeling
included a carefully selected 40 geo-specific features for the US
counties.

A previous study by Liu et al. on machine learning-based
predictions of COVID-19 outbreak in China, showed that modeling
for the regions clustered together based on geo-specific similarities
resulted in improved predictive performance for majority of China
provinces [5]. In this work, we studied four different clustering
strategies, primarily based on demographic similarities, COVID
activity trends, state boundaries, as well as a national cluster, to
examine the effects of these boundary conditions in predictive
power of our model.

Our main contribution is investigating the role of machine learning
to adjust the short-term epidemiological projections with the
ultimate aim of helping counties and hospitals better plan their
resources. We are also investigating which additional region-
specific features play a role in short-term adjustments of the
COVID-19 projections.

1 RESULTS

For historical epidemiological projection, we used the
CovidActNow model as one of the early epidemiological models
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that became opensource [6]. For the data augmentation purpose, we
considered four clustering strategies: one national cluster including
all the counties in our training set, second clustering based on
counties state boundary, and another two clustering strategies were
based on counties similarities in COVID-19 spread characteristics
and demographic information as described in the Methods section.

The epidemiological historical projections were one-day ahead on
any given day during March 23"-April 20" 2020 period. We
trained an individual date-dependent models for each of the clusters
within each clustering strategy. The out-of-sample test sets were
evaluated from April 6™ to April 19%, 2020 individually each with
the date-appropriate trained model (the total of 14 date-dependent
models for each cluster). The comparison and the impact of the four
different clustering boundary conditions is shown in Table 1.

Regardless of the clustering strategy, our one-day-ahead prediction
showed ~97% uplift compared to the epidemic projection with the
same one-day-ahead horizon. Overall, the performance of the
models based on each clustering strategy was similar.

Table 1: Comparison of four clustering strategies. RMSE
values are derived by comparing our model predictions to the
ActNow model ground truth values. The uplift percentage is
derived based on ActNow projections (RMSE = 6427.27)

Clustering  National ~Demographic ~COVID  State
boundary

condition tot. 1 tot. 6 tot. 12 tot. 51
RMSE 193.29 194.10 192.49 196.94

Overall R 0.883 0.875 0.875 0.865
% uplift 96.99% 96.98% 97.00%  96.93%

Also consistent across all four different clustering strategies, the
best model performance was achieved for the cluster in which New
York County was included. Figure 1 shows the comparison of our
model output to the CovidActNow projected “all infected” cases
both compared with the ground truth (i.e., estimated all infected)
for three example counties which clustered together with New York
County for two different clustering strategies. Both COVID-based
and demographic-based clustering achieved 97% uplift compared
to the epidemiological projections for the cluster model that
included New York County.

Closer assessment of two major counties of New York and Los
Angeles further revealed the similarities of four different clustering
strategies, particularly for New York County as shown in Figure 2.
The best performing cluster model for New York County was found
to be state-based clustering with R?= 0.90. Los Angeles County
was obtained from the COVID-based clustering method, which
follows similar trajectory as the national clustering with
comparable RMSE (676.34 and 695.61, respectively). State-
clustered model showed highest deviation with RMSE = 1249.78,
followed by second highest RMSE = 723.75 from the demographic-
based clustering model. We found that the level of COVID-19
inactivity or low activity in the cluster impacted the performance
for the corresponding model. For example, comparing two of the



Machine Learning Adjustment of COVID-19 Projections

clusters containing Los Angeles County from two different
clustering strategies, the state-based cluster contained 36% zero
cases as opposed to only 2% zero cases in the COVID-based
cluster.
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o — — - | R A
e o — k’i'_‘\v—
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Figure 1: One-day-horizon predictions from our machine
learning model and from the CovidActNow epidemiological
model both compared to the ground truth for two different
clustering strategies: a) one of the 12 clusters of the COVID-
based clustering with 49 counties in the cluster, and b) one of
the 6 clusters of the demographic-based clustering with 259
counties in the cluster.

As LASSO gives spare weights by driving small weights to zero,
we can detect the most predictive features of our model. As walk-
forward split expands by every date and more training data gets
included in the split, fewer features become prominent. For the
national model, as shown in Figure 3, the most impactful features
for the last trained model were population density, and the
autoregressive features of new COVID cases from three previous
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date of the prediction. In the first trained model (with the least
training data), in addition to population density and autoregressive
features, workers in commuting flow and cumulative number of
cases had positive predictive effects on predicting the next day’s
infected cases. In contrast, population and next day projected cases
from the CovidActNow output had negative predictive power. We
speculate the negative predictive power of CovidActNow is due to
its increasing trend as opposed to ground truth that has downward
trend generally. It is also important to note for the first trained
model (first expanding window iteration) with limited training data,
LASSO attempts to distribute the weights to more features. As the
training data expands in the last trained window, the effect of
CovidActNow projections is eliminated. Other features had small
weights (either negative or positive) and eventually weighted to
zero for the last trained model. Similarly, we found that population
density and three autoregressive features were the most important
(non-zero and positive) features for the majority including best
performing clusters, for other clustering strategies. For the
demographic-based clustering due to homogeneous distribution of
the, regardless of the date of trained model, none of the
demographic features carried any weight with the exception of the
population density and workers in commuting flow. Overall, no
particular pattern was detected for the role of race and sex with few
exceptions. For instance, the proportion of non-Hispanic black
population showed positive predictive impact for the State of
Wisconsin with the state-based clustering approach. For feature
importance map of other three clustering strategy please refer to
APPENDIX II.

2 Methods

For the purpose of data augmentation, we considered grouping
counties four different ways to ensure the that the scarcity of
available training data during early period of COVID-19 pandemic
(window considered March 23™-April 20t 2020) did not impact
the model performance. One grouping included counties of each of
the US states, yielding 51 individual trained models. Another
national approach involved grouping all the counties together and
training one model for all. The two other groupings were conducted
by clustering the counties based on their similarities in COVID-19
spread characteristics and demographic information as described
below.

2.1 Clustering Strategy

Clustering was conducted based on agglomerative hierarchal
clustering algorithm (scikit-learn package), which is a bottom-up
approach merging counties based on their similarities until reaching
one big cluster. The optimal number of clusters was obtained by
maximizing Calinski-Harabasz score.

The counties were clustered based on their demographic
information for which the optimization yielded 6 clusters. Features
included race, ethnicity, gender, elderly (age > 65 years) and young
(age < 18 years) population, total and density of population, county
traffic volume, county average commute flow, as well as Area
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Deprivation Index, rankings of counties by socioeconomic status
disadvantage [7].

New York County (one-day-horizon predictions)
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Figure 2: One-day-horizon predictions of our models trained
individually according to the clustering strategy for two of the
major counties.

Counties were also separately clustered based on time-varying
COVID-19 characteristics, resulting in 12 dissimilar clusters.
Features included reciprocal doubling time based on the growth
during the selected time window, the pattern of the growth curve
(logistic, exponential or none), cumulative cases on April 20",
2020, and number of days stayed at home since the stay-at-home
order for each county. Maps of the clustered US counties based on
their demographic and COVID-19 activity similarities are available
in APPENDIX I.

2.2 Epidemiological Projections

The Coronavirus Act Now model is SEIR model, one of the main
groups of epidemiological models used by epidemiologists and
researchers to project the evolution of a disease. The model works
by categorizing the population at various states and modeling as the

' As of April 12%, 2020, the ActNow model has gone through an update and
“asymptomatic individuals” category has been added to the model. However, the
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population moves through susceptible (S), individuals becoming
exposed (E) to the virus, then infected (I), and infected population
either recovering (R) or dying (D). To model hospitalization and
need for ICU bed, the infected cases were categorized into three
levels of disease severity: mild (no hospitalization), moderate
(requiring hospitalization), or severe (requiring ICU bed)'.

National-level model

'— 2
||“ |_ Lo

Custers

O

DMOIrow_new_p

Figure 3: LASSO selected features for the first (top panel) and
last (bottom panel) trained models (out of 14 date-dependents
models) trained for all of the counties included in our model
(total of 1578 counties). Although majority are small values,
none of the features in the first trained model have zero
coefficients. The last model has 36 features with coefficients
value of zero displayed for better comparison.

For the earlier version of the ActNow model, caseload data
(number of confirmed cases and death) were updated daily from the
Johns Hopkins University (JHU) Center for Systems Science and
Engineering’s Coronavirus Tracking Dashboard [8] with the
county-level data becoming available as of March 22", 2020.

We used “all infected” projection (including mild, moderate, and
severe cases) output of the CovidActNow model to compare with
our machine learning forecasting. In order to compare our model
results with CovidActNow, we used the same ground truth as
CovidActNow [6]. In the earlier version of the ActNow model', the
ground truth for the “all infected” (i.e. estimated all infected) was
derived as follow: “estimated recovered” was estimated from actual
COVID cases report (JHU) shifted by 13 days. The “estimated
recovered” cases together with total number of deceased
populations on a given date gives an estimate of active cases. Due
to lack of reported data on hospitalization at the county level,
CovidActNow then estimates that a quarter of the “estimated
active” cases are hospitalized. And finally, that “estimated
hospitalization” is about 7.3% of “estimated all infected” (mild,

projections used in this study are the outputs of the model prior to this change and thus
do not include asymptomatic cases.
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moderate, and severe) cases. Thus, we used “estimated all infected”
as the ground truth to compare our forecasting to the ActNow
model projections.

The one-day-horizon CovidActNow historical projections were
obtained by running a model for every day during March 23%-April
20, 2020 period and selecting the next-day projections yielding 28
days datapoints. Since the ActNow model produced several
intervention scenarios, for each date, we selected the output that
matched the actual in-place intervention. We obtained the
intervention policies for each state from The New York Times
website. For some of the states, the policies were not held state-
wide, thus scraped those individual county policies from various
news outlets.

2.3 Predictive Model

For the predictive modeling, we fitted our data to a LASSO model,
a multivariate linear model with Ll-norm regularization
(penalizing the absolute sum of the model coefficients). The feature
vector included both time-dependent and static features for each
county. The time-dependent were COVID-19 dependent features
both from the epidemiological model output and from JHU
reported parameters. The time-independent features were
demographic and characteristics of each county. In total, static and
time-varying, 40 features were included in our model. For the list
of the features and their sources please refer to APPENDIX III.

The number of new confirmed COVID-19 cases for the next day
was then predicted based on:

2

34
Ver1 = Z aYe—i + Bde + Vieys +6C + Z.ujsj
i=0 j=1

Where ¥¢11 , V¢, Ve—1, and y,_, are the new confirmed cases for
the next day, same date, the day before, and two days prior of date
t. d; refers to the new death number at date t; i, is the new “all
infected” cases projected for next day at date t from the
epidemiological model, and C, is the cumulative number of
COVID-19 cases on date t. S; refers to collection of 34 static
features including, population density, county commute flow, age,
gender, race, socioeconomic features such as unemployment and
Area Deprivation Index, as well as disease prevalence and
comorbidities.

Due to time-series nature and daily update of the data, a walk-
forward with expanding window validation fashion was considered
resulting in 15 splits with one day horizon and initial training
window of 10 days. Since the split was performed according to the
date of data, each cluster yielded 15 sets consistently; however,
depending on number of counties in each cluster, different train-
test splits were expected for each cluster. The total of 1578 counties
were included in this study each with feature vector of size 40. To
compare the predicted outcome of our model with the
epidemiological projected cases, the predicted new confirmed cases
were then summed with the JHU-reported “cumulative number of
cases” from the previous date, and then converted to “estimated all
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infected” according to the conversion used in the CovidActNow
model.

The best model parameters, including LASSO alpha, were selected
in a Grid search manner. To simulate the real-life scenario in which
the last trained model needs to be updated daily as the new data
comes in, the model trained on the first n-1 splits (n=2, 3, 4, ... 15),
was evaluated on the test set of nth split
(i.e. out-of-sample test set).

3 CONCLUSIONS

Our machine learning results showed significant improvement over
the epidemiological projection with a one-day prediction horizon.
Although small, the changes in model performance was detectable
based on different clustering strategies. Assessing New York
County, for example, we found state-based clustering achieved the
highest performance for the state of New York (R’ = 0.90).
However, state-based clustering resulted in lowest performance for
overall counties compared to other strategies (Table 1). This
finding suggests an advantage to considering training individual
models based on the geographic region.

The results shown for our model are from March-April 2020 period
of time, a time of dramatic increases in COVID-19 spread in major
cities with subsequent implementation of mitigation strategies,
such as stay-at-home policies with California first to enforce such
a policy on March 19, 2020. Our findings of different clustering
strategies and feature importance were likely due to the highly
dynamic nature of infectious spread and local policies at this time.
Moreover, as more data has become available over time,
epidemiological models are also improving and more scenarios are
considered in the modeling methods, such as the impact of
asymptomatic cases in the recent version of the ActNow model.

It is also important to note that for this work, our prediction is short
and limited to one-day horizon. Although, it is not expected that all
of the 40 features that we have included have predictive power, we
suspect with longer prediction horizon, demographic and geo-
specific features will have important roles.

With initially flattening and now new rises in the pandemic curve,
we plan to expand our modeling prediction horizon to as long as
two weeks ahead. Some of the challenges that we foresee with
longer prediction horizon is the policy changes as the states would
go through different phases of reopening. We suspect for longer
prediction horizon, more COVID-specific trends for each state as
well as information about the upcoming policies can improve the
predictive powers. Also, we intend to incorporate several
epidemiological models’ outputs to study their difference and
impact in our modeling.
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APPENDIX I: Clustering of US Counties

2
0
: 3
4
1
5

Supplementary Figure 1: US counties clustering based on their
demographic similarities. For the reference, New York county
is in cluster 5.
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Supplementary Figure 2: US counties clustering based on their
COVID-19 activity similarities during March 23'9-April 20®
2020. For the reference, New York county belongs to cluster 9.
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APPENDIX II: LASSO Selected Features
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Supplementary Figure 3: LASSO selected features for the last
trained model (out of 14 date-dependents models) of each
cluster trained for the counties clustered together based on
similarities of COVID characteristics. New York County is part
of cluster 9, yielding best preforming model.
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Supplementary Figure 4: LASSO selected features for the last
trained model (out of 14 date-dependents models) of each
cluster trained for the counties clustered together based on
their demographic similarities. New York County is part of
cluster 5, yielding best preforming model. The features with
coefficients value of zero for across all the cluster-based models
have been removed from the heatmap for better visual (33 zero-
coefficient features)
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cluster trained for the counties clustered together based on
their state boundary. New York County is part of cluster 32,
yielding best preforming model.
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APPENDIX III: Data sources

Feature

dead count

New projected all
infected

Cumulative
COVID cases

New COVID cases
for date t-0

New COVID cases
for date t-1

New COVID cases
for date t-2

Area Deprivation
Index

Workers in
commuting flow

Source

JHU

ActNow output

for March-April
version

JHU

JHU

JHU

JHU

University of
Wisconsin

United States
Census Bureau

Note

Daily
report

Date t+1
values
were
extracted
from
model ran
on date t

Daily
report

t-0
cumulative
cases
subtracted
from day
before

t-1
cumulative
cases
subtracted
from day
before

t-2
cumulative
cases
subtracted
from day
before

Year 2018

2011-2015
ACS
commuting
flows
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Feature

- Prevalence of
respiratory
diseases per
county broken
down by age
groups,

- Relative risk
scores reflective
of comorbidities

- Population,

- population
density,

- uninsured,

- homeownership,

- traffic-volume,

- preventable
hospitalization,

- high-school grad,

- some college,

- unemployment,

- adult smoking,

- adult obesity,

- diabetes
prevalence,

- HIV prevalence,

- Age below 18,

- Age above 65,

- Non-Hispanic
black,

- American Indian,

- Asian,

- Hawaiian pacific
islander

- Hispanic,

- Non-Hispanic
white,

- Non-English
proficiency,

- Female,

- Rural

Source

IBM® Advantage

Suite®

County Health
Rankings and
Roadmaps

Note

2018

- Data
compiled
from
CDC and
other
public
agency
reports.

Year 2018



Exploratory Analysis of Covid-19 Tweets using Topic Modeling,
UMAP, and DiGraphs
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ABSTRACT

This paper illustrates five different techniques to assess the distinc-
tiveness of topics, key terms and features, speed of information
dissemination, and network behaviors for Covid19 tweets. First, we
use pattern matching and second, topic modeling through Latent
Dirichlet Allocation (LDA) to generate twenty different topics that
discuss case spread, healthcare workers, and personal protective
equipment (PPE). One topic specific to U.S. cases would start to
uptick immediately after live White House Coronavirus Task Force
briefings, implying that many Twitter users are paying attention
to government announcements. We contribute machine learning
methods not previously reported in the Covid19 Twitter literature.
This includes our third method, Uniform Manifold Approximation
and Projection (UMAP), that identifies unique clustering-behavior
of distinct topics to improve our understanding of important themes
in the corpus and help assess the quality of generated topics. Fourth,
we calculated retweeting times to understand how fast informa-
tion about Covid19 propagates on Twitter. Our analysis indicates
that the median retweeting time of Covid19 for a sample corpus in
March 2020 was 2.87 hours, approximately 50 minutes faster than
repostings from Chinese social media about H7N9 in March 2013.
Lastly, we sought to understand retweet cascades, by visualizing
the connections of users over time from fast to slow retweeting.
As the time to retweet increases, the density of connections also
increase where in our sample, we found distinct users dominating
the attention of Covid19 retweeters. One of the simplest highlights
of this analysis is that early-stage descriptive methods like regu-
lar expressions can successfully identify high-level themes which
were consistently verified as important through every subsequent
analysis.
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1 INTRODUCTION

Twitter has been used as an early warning notifier, emergency com-
munication channel, public perception monitor, and proxy public
health surveillance data source in a variety of disaster and disease
outbreaks from hurricanes[58], terrorist bombings [7], tsunamis
[8], earthquakes [18], seasonal influenza [36], Swine flu [52], and
Ebola [38]. In this paper, we conduct an exploratory analysis of
topics and network dynamics of Covid19 tweets. Since January
2020, there have been a growing number of papers that analyze
Twitter activity during the Covid19 pandemic in the United States.

Our contributions to the current Covid19 Twitter analyses since
January 1, 2020 in Table 4, are applying machine learning meth-
ods not previously analyzed on Covid19 Twitter data, mainly Uni-
form Manifold Approximation and Projection (UMAP) to visualize
LDA generated topics and directed graph visualizations of Covid19
retweet cascades. Topics generated by LDA can be difficult to inter-
pret and while there exist coherence values [43] that are intended
to score the interpretability of topics, they continue to be difficult to
interpret and are subjective. As a result, we apply UMAP, a dimen-
sionality reduction algorithm and visualization tool that "clusters”
documents by topic. Vectorizing the tweets using term-frequency
inverse-document-frequency (TF-IDF) and plotting a UMAP visual-
ization with the assigned topics from LDA allowed us to identify
strongly localized and distinct topics. We then visualized "retweet
cascades", which describes how a social media network propagates
information [22], through the use of graph models to understand
how dense networks become over time and which users dominate
the Covid19 conversations. This paper studies five research ques-
tions:

(1) What high-level trends can be inferred from Covid19 tweets?

(2) Are there any events that lead to spikes in Covid19 Twitter
activity?

(3) Which topics are distinct from each other?

(4) How does the speed of retweeting in Covid19 compare to
other emergencies, and especially similar infectious disease
outbreaks?

(5) How do Covid19 networks behave as information spreads?

2 DATA COLLECTION

Similar to researchers in Table 4, we collected Twitter data by
leveraging the free Streaming APIL From March 24, 2020 to April
9, 2020, we collected 23,830,322 (173 GB) tweets. Note, in this pa-
per, we refer to the Twitter data interchangeably as both "dataset"
and "corpora" and refer to the posts as "tweets". Our dataset is a
collection of tweets from different time periods shown in Table 5.
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Table 1: Average Frequency of Keyword Tweets by Minute

Corpus bed hospital mask icu  help nurse doctors vent test_pos serious_cond exposure cough fever

3/24/2020 3.341 30.068 38.295 3.159 2591 4.886 8.455 25.977 0.636 0.023 0.250 0.409 0.023

3/25/2020 3.117 33.021 38.734 2.819 3.181 3.745 8.064 24.691 1.298 0.043 0.277 0.372 0.106

3/28/2020 1.819 30.648 34.352 1.714 2362 4.800 8.486 38.790 0.962 0.019 0.181 0.181 0.029

3/30/2020 2.783 40.957 53.796 2.311 3.287 6.996 13.009 24.887 1.111 0.025 0.215 0.296 0.043

3/31/2020 2.109 30.673 72.877 1.447 3.677 5.633 10.410 17.995 1.020 0.014 0.152 0.494 0.147

4/2/2020 2.065 29.410 84.467 1.474 3.164 6.147 10.450 23.424 0.814 0.018 0.192 0.357 0.045

4/5/2020 2.218 31.812 62.786 2.493 3.039 5.798 10.735 17.909 1.026 0.014 0.175 0.309 0.052

Mean 2.493 32.370 55.044 2.203 3.043 5.429 9.944 24.811 0.981 0.022 0.206 0.345 0.064

Using the Twitter API through tweepy, a Python Twitter mining 05

and authentication API, we first queried the Twitter track on twelve

query terms to capture a healthcare-focused dataset: ’ICU beds’, o4

‘ppe’, ‘masks’, "long hours’, ’deaths’, "hospitalized’, ’cases’, 'ventila- g s

tors’, ‘respiratory’, "hospitals’, *#covid’, and "#coronavirus’. For the @

keyword analysis, topic modeling, and UMAP tasks, we analyzed g 02

non-retweets that brought the corpus down to 5,506,223 tweets. In 38 o

the Time-to-Retweet and Network Analysis, we included retweets '

but selected a sample out of the larger 23.8 million corpus of 736,561 0.0

tweets. Our preprocessing steps are described in the Data Analysis ° " * ® ® *
Number of Topics

section that follows.

3 KEYWORD TREND ANALYSIS

Prior to applying keyword analysis, we first had to pre-process the
corpus on the “text” field. First, we removed retweets using regular
expressions, in order to focus the text on original tweets and author-
ship, as opposed to retweets that can inflate the number of messages
in the corpus. We use no-retweeted corpora for both the keyword
trend analysis and the topic modeling and UMAP analyses. Further
we formatted datetime to UTC format, removed digits, short words
less than 3 characters, extended the NLTK stopwords list to also
exclude “coronavirus”, “covid19”, “19”, “covid", removed “https:”
hyperlinks, removed “@” signs for usernames, removed non-Latin
characters such as Arabic or Chinese characters, and implemented
lower-casing, stemming, and tokenization. Finally, using regular ex-
pressions, we extracted tweets that contained the following thirteen
single terms: 'bed’, "hospital’, 'mask’, ’icu’, *help’, ‘nurse’, ’doctors’,
‘vent’, test_pos’, ’serious_cond’, ‘exposure’, ‘cough’, and ’fever’, in
order to gain insights about currently trending public concerns.
We present values of the raw counts of the tweets in the Appendix
under Table 6 and the frequencies of tweets per minute here in
Table 1.

The greatest rate of tweets occurred for the tweets consisting of
the term "mask" (mean 55.044) in Table 1, followed by "hospital"
(mean 32.370) and "vent" (mean 24.811). Tweets of less than 1.0 mean
tweets per minute, came from groups about testing positive, being in
serious condition, exposure, cough, and fever. This may indicate that
people are discussing the issues around Covid19 more frequently
than symptoms and health conditions in this dataset. We will later
find out that several themes consistent with these keyword findings
are mentioned in topic modeling to include personal protective
equipment (PPE) like ventilators and masks, and healthcare workers
like nurses and doctors.
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Figure 1: Coherence Scores by Number of Topics
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Figure 2: Distribution of 20 Topics in the Corpora

4 TOPIC MODELING

LDA are mixture models, meaning that documents can belong to
multiple topics and membership is fractional [6]. Similar to methods
described by Syed et al. [51], we ran 15 different LDA experiments
varying the number of topics from 2 to 30, and selected the model
with the highest coherence value score. We selected the LDA model
that generated 20 topics, with a medium coherence value score of
0.344. Roder et al. [43] developed the coherence value as a metric
that calculates the agreement of a set of pairs and word subsets and
their associated word probabilities into a single score.

Our final model generated 20 topics using the default parameters
of the Gensim LDA MultiCore model ! with an overall coherence
score of 0.428 after modifying the chunksize to 50,000. The topics
are provided in Figure 2 and include the terms generated and each
topic’s coherence score measuring interpretability. Similar to the
high-level trends inferred from extracting keywords, themes about
PPE and healthcare workers dominate the nature of topics. The

!https://radimrehurek.com/gensim/models/ldamulticore.html
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Table 2: 20 Topics Generated from LDA Model

Topic C_V  Terms Language
1 0.922 de, la, el, en, que, lo, por, del, para, se, es, con, un, al, est, una, su, ms, caso, todo Spanish
2 0.241  like, look, work, dont, amp, peopl, time, read, support, respiratori, great, death, us, case, hospit, listen, im, presid, agre, way English
3 0.222  hospit, realli, patient, johnson, bori, oh, shit, amp, peopl, make, death, e, blood, like, call, treat, human, trial, guy English
4 0.171  china, thank, lockdown, viru, latest, corona, pandem, covid2019, us, lie, hai, ye, stayhom, trump, daili, way, social, quarantin, help, 5g English
5 0.363 case, spread, help, slow, risk, symptom, daili, mask, identifi, sooner, asymptomat, us, test, market, selfreport, de, 2, 9, question, commun English
6 0.413 day, case, week, news, ago, state, health, two, month, death, last, 15, us, delhi, hospit, one, 2, new, said, lockdown English
7 0.287  test, case, hospit, posit, corona, dr, viru, kit, patient, ppe, doctor, data, govern, work, de, say, vaccin, death, drug, amp English
8 0.173  die, world, peopl, case, us, death, der, tell, und, flu, corona, da, im, never, cant, fr, thousand, africa, help, ist English
9 0.413  mask, face, wear, make, one, public, protect, cdc, peopl, dont, n95, recommend, us, viru, love, cloth, new, 0, trump, work English
10 0.440 mask, home, stay, peopl, pleas, ppe, hospit, help, work, wear, amp, like, worker, care, nurs, safe, sure, dont, doctor, hand English
11 0.296  hospit, nurs, le, case, de, ppe, work, new, doctor, go, pay, help, let, one, live, us, local, time, staff, lockdown English
12 0.572 case, death, new, report, total, confirm, day, posit, number, york, us, state, 1, today, 2, 3, updat, test, peopl, rise English
13 0.483 mask, ppe, ventil, hospit, medic, trump, suppli, donat, us, need, worker, state, china, n95, million, use, help, order, equip, amp English
14 0.713 de, que, e, em, da, per, el, com, la, para, um, se, os, le, na, un, mai, brasil, dia, del Portuguese
15 0.490 case, death, number, total, countri, updat, time, india, confirm, recov, china, corona, hour, last, us, news, peopl, new, activ, hospit English
16 0.582 di, il, e, la, na, per, che, non, sa, al, si, un, da, del, ng, ang, le, ha, con, het Ttalian
17 0.247  great, god, news, sad, shame, ppe, bless, hydroxychloroquin, hospit, de, death, ventil, stori, die, amp, hear, man, case, hong, holi English
18 0.329 trump, peopl, death, american, live, stop, amp, us, let, hospit, time, viru, caus, like, one, dont, true, go, kill, media English
19 0.904 de, le la, en, et, du, pour, un, pa, que, il, ce, au, qui, confin, dan, une, est, cest, sur French
20 0.293  hospit, im, peopl, still, govern, dont, thing, amp, death, fuck, one, work, job, state, money, model, us, start, happen, ive English
ey — 1. Spanish 3. haspit realli patiens = & . case spread slow 7 - test case hosp . mask tace wear = 11 . haspitners be === 13 . mask ppesventd = 15 . case death number 17 - grear god news 19 - French

2 ke look work —— 4 - china thank lockdown —— & - dayCase week 8 - che world peopl 10 - mask hame. stay 12 - case death.new —— 14 - Portuguese = 16 - Rtaikan 18 - potus 20 - hospit im.peopt

&=

Figure 3: Trend of Topics over Time from March 24 to March 28, 2020

100 =
— 1.Spantn = 3. haspitrealli patiens = 5 - case speend slow 7 - test case hosp G- mask face wear = 11 haspitmursle === 13 . mask ppeventd —— 15 - case death number 17 - great ged news 14 - French
2. e ook work —— & - china thenk lockdown —— © - daicase week 1 - die.wand peop! 10 - magk home. stay 12 - case death.new — 14 - Portuguess —— 16- ttalisn 19 . potus 20 - NOSHIE Im. peop

Figure 4: Trend of Topics over Time from March 30 to April 8, 2020

terms generated also indicate emerging words in public conversa- is consistent with what Singh et al. [46] reported as a variety of
tion including "hydroxychloroquine” and "asymptomatic". languages in Covid19 tweets upon analyzing over 2 million tweets.

Our results also show four topics that are in non-English lan- As a result, we labeled the four topics by the language of the terms
guages. In our preprocessing, we removed non-Latin characters in in the respective topics: "Spanish" (Topic 1), "Portuguese” (Topic
order to filter out a high volume of Arabic and Chinese characters. 14), "Italian" (Topic 16) and "French" (Topic 19). We used Google
We did not filter out for Latin characters, leading our topics to be Translate to infer the language of the terms. This study may be
a mix of English, Spanish, Italian, French, and Portuguese. This strengthened by working with a native speaker of these languages
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100:N/A
10:mask.home.stay
11:hospit.nurse.le
12:case.death.new
13:mask.ppe.ventil
14:Portuguese
15:case.death.number
16:Italian
17:great.god.news
18:potus

19:French

1:Spanish
20:hospit.im.peopl
2:like.look.work
3:hospit.realli.patient
4:china.thank.lockdown
5:case.spread.slow
6:day.case.week
mmm  7:test.case.hosit
mmm  8:die.world.peopl
mmm 9:mask.face.wear

UMAP: metric=hellinger, n_neighbors=15, min_dist=0.1

Figure 5: Visualization of One Million Tweets with Topic Labels

Live White House Briefing 3-24-2020 17:43

2417:20 2417:25 2417330 2417:35  2417:40  2417:45  2417:50 241755 2418:00

Figure 6: Change Point Detection using Binary Segmenta-
tion for March 24, 2020

to filter out stop words from these languages in order to improve
the resolution and interpretability of foreign topics.

When examining the distribution of the 20 topics across the
corpora in Figure 2, Topics 18 ("potus"), 12 (“case.death.new"), 13
("mask.ppe.ventil"), and 2 ("like.look.work") were the top five in the
entire corpora. For each plot, we labeled each topic with the first
three terms of each topic for interpretability, for the exception of
Topic 18. In our trend analysis, we summed the number of tweets
per minute, and then applied a moving weighted average of 60
minutes for topics March 24 - March 28, and 60 minutes for topics
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March 30 to April 8th. The results plotted in figures Figure 3 and
Figure 4 show similar trends on a time-series basis per minute across
the entire corpora of 5,506,223 tweets. These plots are in a style
of "broken axes" ? to indicate that the corpora are not continuous
periods of time, but discrete time frames, which we selected to plot
on one axis for convenience and legibility. We direct the reader to
Table 5 for reference on the start and end datetimes, which are in
UTC format, so please adjust accordingly for time zone.

The x-axis denotes the number of minutes, where the entire
corpora is 8463 total minutes of tweets. Figure 3 shows that for the
corpora of March 24, 25, and 28, the topics (denoted in hash-marked
lines) focused on Topic 18 "potus” and Topic 13 "mask.ppe.ventil"
trended greatest. For the later time periods of March 30, March
31, April 4, 5 and 8 in Figure 4, Topic 18 "potus" and Topic 13
"mask.ppe.ventil” (also in hash-marked lines) continued to trended
high. Our topic findings are consistent with the published analyses
on Covid19 and Twitter, such as [46] who found major themes of
healthcare and illness and international dialogue, as we noticed in
our four non-English topics. They are also similar to by Thelwall et
al. [55] who manually reviewed tweets from a corpus of 12 million
tweets occurring earlier and overlapping our dataset (March 10 -
29). Similar topics from their findings to ours includes "lockdown
life", "politics", "safety messages", "people with COVID-19", "support
for key workers", "work", and "COVID-19 facts/news".

When examining the trend of the Topic 18 "potus" topic, we
found that several live press briefings with the Coronavirus Task
Force from @WhiteHouse would stimulate a spike in the Topic 18
topic 60 tweets per minute:

Zhttps://github.com/bendichter/brokenaxes
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e March 24, 2020, LIVE: Press Briefing with Coronavirus Task
Force at 5:43 PM EST

e April 3, 2020, LIVE: Press Briefing with Coronavirus Task
Force at 5:24 PM EST followed by a retweet from @White-
House "Coronavirus—and we salute the great medical pro-
fessionals on the front lines." at 5:59 PM EST

e April 4, 2020, LIVE: Press Briefing with Coronavirus Task
Force at 4:13 PM EST

e April 5, 2020, LIVE: Press Briefing with Coronavirus Task
Force at 6:53 PM EST

e April 6, 2020, LIVE: Press Briefing with Coronavirus Task
Force at 5:41 PM EST

e April 8, 2020: LIVE: Press Briefing with Coronavirus Task
Force at 5:46 PM EST

We applied change point detection in the time series of tweets
per minute for Topic 18 in the datasets March 24, 2020, April 3 -
4, 2020, April 5 - 6, 2020, and April 8, 2020, to identify whether
the live press briefings coincided with inflections in time. Using
the ruptures Python package [56] containing a variety of change
point detection methods, we used binary segmentation [25], a stan-
dard method for change point detection. Given a sequence of data
Y1:n = (Y1, ... Yn) the model will have m changepoints with their po-
sitions 7y, = (71, ..., Tm). Each changepoint position is an integer
between 1 and n — 1. The m changepoints split the time series data
into m+1 segments, with the ith segment containing Y(Ti-1+ 1) : 1.
Changepoints are identified by minimizing a cost function, C for a
given segment, where ff(m) is a penalty to prevent overfitting.

m+1

2, 1Cyaa + 1) w)] + f (m)

i=1
where twice the negative log-likelihood is a commonly used cost
function. Binary segmentation detects multiple changepoints across
the time series by repeatedly testing on different subsets of the
sequence. It checks to see if a 7 exists that satisfies:

Clynr) + C(y(r+1):n) + B < C(y1:n)

If not, then no changepoint is detected and the method stops. But
if a changepoint is detected, the data are split into two segments
consisting of the time series before (Figure 6 blue) and after (Figure 6
pink) the changepoint. We can clearly see in Figure 6 that the timing
of the White House briefing indicates a changepoint in time, giving
us the intuition that this briefing influenced an uptick in the the
number of tweets. We provide additional examples in the Appendix.

5 UNIFORM MANIFOLD APPROXIMATION
AND PROJECTION

TF-IDF [40] is a weight that signifies how valuable a term is within
a document in a corpus, and can be calculated at the n-gram level.
With TF-IDF, unique words carry greater information and value
than common, high frequency words across the corpus. TF-IDF
has been widely applied for feature extraction on tweets used for
text classification [29] [19], analyzing sentiment [5], and for text
matching in political rumor detection [22]

Using the Scikit-Learn implementation of Tfidf Vectorizer and set-
ting max_features to 10000, we transformed our corpus of 5,506,223

tweets into a R™¥ sparse dimensional matrix of shape (5506223,

52

epiDAMIK 2020, Aug 24, 2020, San Diego, CA

10000). Note, prior to fitting the vectorizer, our corpus of tweets was
preprocessed during the keyword analysis stage. We chose to visu-
alize how the 20 topics grouped together using Uniform Manifold
Approximation and Projection (UMAP) [34]. UMAP is a dimension
reduction algorithm that finds a low dimensional representation
of data with similar topological properties as the high dimensional
space. It measures the local distance of points across a neighbor-
hood graph of the high dimensional data, capturing what is called
a fuzzy topological representation of the data. Optimization is then
used to find the closest fuzzy topological structure by first approx-
imating nearest neighbors using the Nearest-Neighbor-Descent
algorithm and then minimizing local distances of the approximate
topology using stochastic gradient descent [33]. When compared to
t-Distributed Stochastic Neighbor Embedding (t-SNE), UMAP has
been observed to be faster [14] with clearer separation of groups.
Due to compute limitations in fitting the entire high dimensional
vector of nearly 5.5M records, we randomly sampled one million
records. We created an embedding of the vectors along two com-
ponents to fit the UMAP model with the Hellinger metric which
compares distances between probability distributions, as follows:

7 l(v#--a,

We visualized the word vectors with their respective labels, which
were the assigned topics generated from the LDA model. We used
the default parameters of n_neighbors = 15 and min_dist = 0.1.
Figure 5 presents the visualization of the TF-IDF word vectors for
each of the 1 million tweets with their labeled topics. UMAP is
supposed to preserve local and global structure of data, unlike t-
SNE that separates groups but does not preserve global structure. As
aresult, UMAP visualizations intend to allow the reader to interpret
distances between groups as meaningful. In Figure 5 each topic is
color-coded by its respective topic.

The UMAP plots appear to provide further evidence of the qual-
ity and number of topics generated. Our observations is that many
of these topic "clusters" appear to have a single dominant color
indicating distinct grouping. There is strong local clustering for
topics that were also prominent in the keyword analysis and topic
modeling time series plots. A very distinct and separated mass of
purple tweets represents the "100: N/A" topic which is an unde-
fined topic. This means that the LDA model outputted equal scores
across all 20 topics for any single tweet. As a result, we could not
assign a topic to these tweets because they all had uniform scores.
But this visualization informs us that the contents of these tweets
were uniquely distinct from the others. Examples of tweets in this
"100: N/A" cateogry include "See, #Democrats are always guilty of
whatever", "Why are people still getting in cruise ships?!?", "Thank
you Mike you are always helping others and sponsoring Anchors
media shows.", "We cannot let this woman’s brave and courageous
actions go to waste! #ChinaLiedPeopleDied #Chinaneedstopay”, "I
wish people in this country would just stay the hell home instead
of GOING TO THE BEACH". Other observations reveal that the
mask-related topic 10 in purple, and potentially a combination of 8
and 9 in red are distinct from the mass of noisy topics in the center
of the plot. We can also see distinct separation of aqua-colored topic
18 "potus" and potentially topics 5 and 6 in yellow.

h(P,Q) =
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We refer the reader to other examples where UMAP has been
leveraged for Twitter analysis, to include Darwish et al. [16] for
identifying clusters of Twitter users with controversial topic sim-
ilarity, Vargas [57] for event detection, political polarization by
Darwish et al. [16] and Stefanov for estimating political leaning of
users by [48]. Future steps for this study include evaluating other
dimensionality reduction techniques to include t-SNE such as the
works of [4, 10, 15] and Principal Component Analysis (PCA) such
as [26, 53] to discover feature correlation and localization.

6 TIME-TO-RETWEET ANALYSIS

A highly retweeted tweet might signal that an issue has attracted
attention in the highly competitive Twitter environment, and may
give insight about issues that resonate with the public [37]. We
extracted metadata from our corpora for the Tweet, User, and En-
tities objects. Due to compute limitations, we selected a sample
that consisted of 736,561 tweets that included retweets from the
corpora of March 24 - 28, 2020. However, since we were only fo-
cused on retweets, out of the corpus of 736,561 tweets, we reduced
it to 567,909 (77%) that were only retweets. We used the corpus of
retweets and analyzed the time between the tweet created_at and
the retweeted created_at.

time_to_rt = rt_object — tw_object

Here, the rt_object is the datetime in UTC format for when the
message that was retweeted was originally posted. The tw_object
is the datetime in UTC format when the current tweet was posted.
This measures the time it took for the author of the current tweet
to retweet the originating message.

Wang et al. [58] calls this "response time" and used it to measure
response efficiency and speed of information dissemination during
Hurricane Sandy. Wang analyzed 986,579 tweets and found that 67%
of re-tweets occur within 1 h [58]. We also tried to identify the speed
of retweeting in disasters and emergencies. For example, Earle [17]
reported 19 seconds was the time it took to retweet following an
earthquake. Kuang et al. [28] similarly defined response time of
the retweet to be the time difference between the time of the first
retweet and that of the origin tweet. Further, Spiro et al. [47] calls
these "waiting times". The median time-to-retweet for our corpus
was 2.87 hours meaning that half of the tweets occurred within this
time (less than what Wang reported as 1.0 hour), and the mean was
12.3 hours. Figure 15 shows the histogram of the number of tweets
by their time to retweet in seconds.

Further, we found that compared to the 2013 Avian Influenza
outbreak (H7N9) in China described by Zhang et al. [63] Covid19
retweeters sent more messages earlier than H7N9. Zhang analyzed
the log distribution of 61,024 H7N9-related posts during April 2013
and plotted reposting time of messages on Sina Weibo, a Chinese
Twitter-like platform and one of the largest microblogging sites in
China Figure 9. Zhang found that H7N9 reposting occurred with
a median time of 222 minutes (i.e. 3.7 hours) and a mean of 8520
minutes (i.e. 142 hours). Compared to Zhang’s study, we found our
median retweet time to be 2.87 hours, about 50 minutes faster than
the reposting time during H7N9 of 3.7 hours. When comparing
Figure 8 and Figure 9, it appears that Covid19 retweeting does not
completely slow down until 2.78 hours later (10* seconds). Whereas,
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Table 3: Statistics about Each Network Community

Graphs Ranking Speed  Time Point Density Nodes 1st 2nd 3rd
G1 1 19 sec 0.000428 1278 1 11 9
G2 2 328 sec (5.47 min) 0.000449 1248 17 8 8
G3 3 591 sec (9.85 min) 0.000450 1247 13 12 9
G4 4 885.6 sec (14.76 min)  0.000460 1234 17 10 10
G5 5 3600 sec (60 min) 0.000567 1110 41 27 20
G6 6 10000 sec (2.78 hrs) ~ 0.000538 1139 18 15 15
G7 7 13,320 sec (3.7 hrs) 0.000540 1138 17 17 11
G8 8 86,400 sec (24 hrs) 0.000685 1005 63 43 26
G9 9 604,800 sec (1 week)  0.000598 1067 92 9 9

for H7N9 it appears to slow down much earlier by 10 seconds. This
may be a sign of the sustained global intensity of the volume and
transmission of high volumes of Covid-related information across
social media, when compared to H7N9 which may be more localized
to a limited geography.

Unfortunately few studies appear to document retweeting times
during infectious disease outbreaks which made it hard to compare
how Covid19 retweeting behavior against similar situations. Fur-
ther, the H7N9 outbreak in China occurred seven years ago and
may not be a comparable set of data for numerous reasons. Chinese
social media may not represent similar behaviors with American
Twitter and this analysis does not take into account multiple factors
that imply retweeting behavior to include the context, the user’s
position, and the time the tweet was posted [37].

6.1 TF-IDF Message and User Description
Features of Rapid Retweeters

We also analyzed what rapid retweeters, or those retweeting mes-
sages even faster than the median, in less than 10,000 seconds were
saying. In Figure 20 we plotted the top 50 TF-IDF features by their
scores for the text of the retweets. It is intuitive to see that URLs
are being retweeted quickly by the presence of "https” in the body
of the retweeted text. This is also consistent with studies by Suh et
al. [49] who indicated that tweets with URLs were a significant fac-
tor impacting retweetability. We found terms that were frequently
mentioned during the early-stage keyword analysis and topic mod-
eling mentioned again: "cases", "ventilators", "hospitals", "deaths",
"masks", "test", "american", "cuomo”, "york", "president”, "china", and
"news". When analyzing the descriptions of the users who were
retweeted in Figure 20, we ran the TF-IDF vectorizer on bigrams
in order to elicit more interpretable terms. User accounts whose
tweets were rapidly retweeted, appeared to describe themselves as
political, news-related, or some form of social media account, all of
which are difficult to verify as real or fake.

7 NETWORK MODELING

We analyzed the network dynamics of nine different time periods
within the March 24 - 28, 2020 Covid19 dataset, and visualized
them based on their speed of retweeting. These types of graphs
have been referred to as "retweet cascades" which describes how a
social media network propagates information [22]. Similar methods
have been applied for visualizing rumor propogation by Jin et al.
[22] We wanted to analyze how Covid19 retweeting behaves at
different time points. We used median retweeting times of disasters
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(g) G7 at 3.7 hr.

(h) G8 at 24 hr.

(i) G9 at 168 hr.

Figure 7: Directed Graphs of Covid19 Retweeting Activity at Nine Different Points in Time (G1 - G9) between March 24 - March

28th using the Kamada Kawai Layout
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Figure 8: Log Distribution of Covid19 Retweets from March
24 - 28, 2020

and emergencies as a benchmark. These include Spiro et al. [47]
for the time it took users to retweet messages based on hazardous
keywords like "Funnel Cloud", "Aftershock”, and "Mudslide". We
also used the H7N9 reposting time which Zhang et al. [63] published
of 3.7 hours.

We generated a Directed Graph for each of the nine time periods,
where the network consisted of a source which was the author
of the tweet (User object, the id_str) and a target which was the
original retweeter shown in Table 3. The goal was to analyze how

Frespuency i Log Trmms formed)

001 01 1 10 100 1000 10000 100000 100000C

Response Timwe (Second) (Log Transformed |

Figure 9: Log Distribution of H7N9-related messages on Sina
‘Weibo, March 2013

connections change as the retweeting speed increases. The nine
networks are visualized in Figure 7. Graphs were plotted using
networkx and drawn using the Kamada Kawai Layout[23], a force-
directed algorithm. We modeled 700 users for each graph. We found
that more nodes became too difficult to interpret. The size of the
node indicates the number of degrees, or users that it is connected
to. It means that the node has been retweeted by others several
times.

The density of each network increases over time shown in Fig-
ure 7 and Figure 10 that shows the time point, density, number
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Figure 10: Increasing Density and Degree for Top 3 Users

of nodes, and number of degrees for the first, second, and third
top user accounts in each network. Very rapid retweeters, in the
time it takes to retweet after an earthquake, start off with a sparse
network with a few nodes in the center being the focus of retweets
in Figure 7a. By the time we reach Figure 7d, the retweeted users are
much more clustered in the center and there are more connections
and activity. The top retweeted user in our median time network
Figure 7g, was a news network and tweeted "The team took less
than a week to take the ventilator from the drawing board to working
prototype, so that it can”. By 24 hours out in Figure 7h, we see a
concentrated set of users being retweeted and by Figure 7i, one
account appears to dominate the space being retweeted 92 times.
This account was retweeting the following message several times
"She was doing #chemotherapy couldn’t leave the house because of the
threat of #coronavirus so her line sisters...". In addition, the number of
nodes generally decreased from 1278 in "earthquake" time to 1067
in one week, and the density also generally increased, shown in
Table 3.

These retweet cascade graphs provide only an exploratory analy-
sis. Network structures like these have been used to predict virality
of messages, for example memes over time as the message is diffused
across networks [59]. But, analyzing them further could enable 1)
an improved understanding about how Covid19 information dif-
fusion is different than other outbreaks, or global events, 2) How
information is transmitted differently from region to region across
the world, and 3) What users and messages are being concentrated
on over time. This would support strategies to improve government
communications, emergency messaging, dispelling medical rumors,
and tailoring public health announcements.

8 LIMITATIONS

There are several limitations with this study. First, our dataset is
discontinuous and trends seen in Figure 3 and Figure 4 where there
is an interruption in time should be taken with caution. Although
there appears to be a trend between one discrete time and another,
without the missing data, it is impossible to confirm this as a trend.
Next, the corpus we analyzed was already pre-filtered with thirteen
"track” terms from the Twitter Streaming API that focused the
dataset towards healthcare related concerns. This may be the reason
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why the high level keywords extracted in the first round of analysis
were consistently mentioned throughout the different stages of
modeling.

Third, the users and conversations in Twitter are not a direct
representation of the U.S. or global population. The Pew Research
Foundation found that only 22% of American adults use Twitter
[39] and that this group is different from the majority of U.S. adults,
because they are on average younger, more likely to identify as
Democrats, more highly educated and possess higher incomes [60].
The users were also not verified and should be considered as a
possible mixture of human and bot accounts. Fourth, we reduced
our corpus to remove retweets for the keyword and topic modeling
analyses since retweets can obscure the message by introducing
virality and altering the perception of the information [32]. As
a result, this reduced the size of our corpus by nearly 77% from
23,820,322 tweets to 5,506,223 tweets. However, there appears to
be variability in terms of consistent corpora sizes in the Twitter
analysis literature both in Table 4 and other health-related studies
[2, 20, 24, 30, 50, 64].

Fifth, our compute limitations prohibited us from analyzing a
larger corpus for the UMAP, time-series, and network modeling.
For the LDA models we leveraged the gensim MulticoreLDA model
that allowed us to leverage multiprocessing across 20 workers. But
for UMAP and the network modeling, we were constrained to use a
CPU. Applying our methods across the entire 23.8 million corpora
for UMAP and the network models may yield more meaningful
results. Sixth, we were only able to iterate over 15 different LDA
models based on changing the number of topics, whereas Syed et al.
[51] iterated on 480 models to select coherent models. We believe
that applying a manual gridsearch of the LDA parameters such
as iterations, alpha, gamma threshold, chunksize, and number of
passes would lead to a more diverse representation of LDA mod-
els and possibly more coherent topics. This study could also be
strengthened by implementing spatio-temporal modeling of LDA
topics by distinct geographies such as U.S. cities and states which
might reveal insights about retweeting behavior and local topics
of interest. For example, Cheng et al. [11] conducted event detec-
tion by analyzing clusters of topics using LDA by the "geo" Twitter
metatag for tweets in London between January 14 and 18, 2013 for
a helicopter crash disaster. He was able to plot hourly and daily
clusters of topic activity on a map of London, offering insight about
sustained or fleeting interest of the topics to the local population.

Seven, it was challenging to identify papers that analyzed Twitter
networks according to their speed of retweets for public health
emergencies and disease outbreaks similar to our methods. Zhang
et al. [63] points out that there are not enough studies of temporal
measurement of public response to health emergencies. We were
lucky to find papers by Zhang et al. [63] and Spiro et al. [47] who
published on disaster waiting times. Although other researchers
have published a variety of studies on Twitter during public health
emergencies [12, 52, 54], it was difficult to compare our results
directly with other disease outbreaks for retweet cascade times and
network models.
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9 CONCLUSION

We answered five research questions about Covid19 tweets during
March 24, 2020 - April 8, 2020. First, we found high-level trends that
could be inferred from keyword analysis. Second, we found that
live White House Coronavirus Briefings led to spikes in Topic 18
("potus”). Third, using UMAP, we found strong local "clustering" of
topics representing PPE, healthcare workers, and government con-
cerns. Fourth, we used retweets to calculate the speed of retweeting.
We found that the median retweeting time was 2.87 hours. Fifth, us-
ing directed graphs we plotted the networks of Covid19 retweeting
communities from rapid to longer retweeting times.
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Table 4: Papers published on Covid19 Twitter Analysis since January 2020

Author Number Tweets Time Period Keywords ~Feature Analysis ~Geospatial Topic Modeling Sentiment Transmission Network Models UMAP
Jahanbin [21], et al. 364,080 Dec. 31 2019 - Feb. 6 2020 X

Banda, et al.[3] 30,990,645 Jan. 1 - Apr 4, 2020 X

Medford, et al. [35] 126,049 Jan. 14 - Jan. 28, 2020 X X X X

Singh, et al.[46] 2,792,513 Jan. 16, 2020 - Mar. 15, 2020 x X X X

Lopez, et al. [31] 6,468,526 Jan. 22 - Mar. 13, 2020 X X X

Cinellj, et al. [13] 1,187,482 Jan. 27 - Feb. 14, 2020 X X X

Kouzy, et al. [27] 673 Feb 27, 2020 X X

Alshaabi, et al. [1] Unknown Mar. 1 - Mar 21, 2020 X X

Sharma, et al. [45] 30,800,000 Mar. 1, 2020 - Mar. 30, 2020 x X X x X X X

Chen, et al. [9] 8,919,411 Mar. 5, 2020 - Mar. 12, 2020 x

Schild [44] 222,212,841 Now. 1, 2019 - Mar. 22, 2020 X X X X

Yang, et al.[61] Unknown Mar. 9, 2020 - Mar. 29, 2020 x X

Ours 23,830,322 Mar. 24 - Apr. 9, 2020 X x x x x
Yasin-Kabir, et al.[62] 100,000,000 Mar. 5, 2020 - Apr. 24,2020  x X X X

B TWITTER DATASET IN UTC TIME

Table 5: Twitter Data Sets March 24, 2020 - April 8, 2020

Corpus  Time Start Time End Total Minutes Size, GB Total Tweets No Retweets Perc No Retweets
3/24/2020  2020-03-24 21:17:27+00:00 2020-03-24 22:00:48+00:00 44 1 132,658 27,374 20.64%
3/25/2020  2020-03-25 14:45:12+00:00  2020-03-25 16:18:47+00:00 94 2 286,405 63,649 22.22%
3/28/2020  2020-03-28 00:17:20+00:00 2020-03-28 02:01:08+00:00 105 2.3 317,498 61,933 19.51%
3/30/2020  2020-03-30 12:55:38+00:00  2020-03-30 21:44:35+00:00 530 11.5 1,618,620 365,808 22.60%
3/31/2020  2020-03-30 21:47:53+00:00 2020-03-31 13:15:36+00:00 929 20.3 2,802,069 576,741 20.58%
4/4/2020 2020-04-03 00:29:11+00:00  2020-04-04 22:05:12+00:00 2737 56.2 7,755,704 1,795,912 23.16%
4/5/2020 2020-04-05 20:41:43+00:00  2020-04-07 15:07:11+00:00 2547 49.4 6,810,216 1,599,455 23.49%
4/8/2020 2020-04-08 13:54:33+0000  2020-04-09 14:30:54+0000 1477 30.4 4,107,152 1,015,351 24.72%
Total 8463 173.1 23,830,322 5,506,223 23.11%

Table 6: Keyword Raw Counts
Corpus  bed hospital mask icu help nurse doctors vent test_pos serious_cond exposure cough fever
3/24/2020 147 1,323 1,685 139 114 215 372 1,143 28 1 11 18 1
3/25/2020 293 3,104 3,641 265 299 352 758 2,321 122 4 26 35 10
3/28/2020 191 3,218 3,607 180 248 504 891 4,073 101 2 19 19 3
3/30/2020 1,475 21,707 28,512 1,225 1,742 3,708 6,895 13,190 589 13 114 157 23
3/31/2020 1,959 28,495 67,703 1,344 3,416 5,233 9,671 16,717 948 13 141 459 137
4/2/2020 5,652 80,495 231,185 4,034 8,661 16,823 28,603 64,112 2,228 48 525 977 122
4/5/2020 5,648 81,025 159,915 6,350 7,741 14,767 27,341 45,614 2,612 36 445 786 133
Total 15,365 219,367 496,248 13,537 22,221 41,602 74,531 147,170 6,628 117 1,281 688 429

C TOPIC MODELING IMPLEMENTATION DETAILS

For the LDA topic modeling, we used the gensim Python library [41, 42]. It provides four different coherence metrics. We used the "c_v"
metric for coherence developed by Roder[43]. Coherence metrics are used to rate the quality and human interpretability of a topic generated.
All models were run with the default parameters using a LdaMulticore model parallel computing on 20 workers, default gamma threshhold
of 0.001, chunksize of 10,000, 100 iterations, 2 passes.
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D LIVE PRESS BRIEFINGS AND TOPIC TIME SERIES

Note - Sudden decreases in Figure 12 signal may be due to temporary internet disconnection.

80

60

40

20

80

60

40

20

40

20

— 1-Spanish
—— 2 - like.look.work—— 4 - china.thank.lockdown—— 6 - day.case.week —— 8 - die.world.peopl—— 10 - make.home.stay—— 12 - case.death.new—— 14 - Portuguese

—— 1-Spanish —— 3 - hospit.realli.patient
~—— 2 - like.look.work —— 4 - china.thank.lockdown —— 6 - day.case.week ~—— 8 - die.world.peopl —— 10 - make.home.stay —— 12 - case.death.new —— 14 - Portuguese

s 4 A i
2R / iV"..“ L:""' L)
Pt & R

—— 3- hospit.realli.patient —— 5 - case.spread.slow—— 7 - test.case.hosp —— 9 - mask.face.wear —— 11 - hospit.nurs.le —— 13 - mask.ppe.ventib— 15 - death. b

17 - great.god.news—— 19 - French
— 16- Italian --- 18- potus ~—— 20 - hospit.im.peopl

Live White House Briefing 3-24-2020 17:43

2417:20 2417:25 2417:30 2417:35 2417:40 2417:45 2417:50 2417:55 2418:00

Figure 11: March 24 5:17 PM to 6:00 PM EST Topics Time Series

— 1-Spanish —— 3- hospit.reallipatient —— 5 - case.spread.slow —— 7 - test.case.hosp —— 9 - mask.facewear —— 11 - hospit.nursle —— 13- mask.ppe.ventil — 15 - case.death.number —— 17 - great.god.news -~ 18 - potus
~—— 2 - like.look.work —— 4 - china.thank.lockdown — 6 - day.case.week ~—— 8 - die.world.peopl —— 10 - make.home.stay —— 12 - case.death.new —— 14 - Portuguese —— 16 - Italian
WhiteHouse RT of Live Briefing: 4-3-2020 17:59 Live White House Briefing 4-4-2020 16:13

N

e
i L E N
i e g A A
AR N2 el H N

S

04-03 00 04-03 06 04-03 12 04-03 18 04-04 00 04-04 06 04-04 12 04-04 18

Figure 12: April 3 8:29 PM EST to April 4 6:05 PM EST Topics Time Series

—— 5-case.spread.slow —— 7 -test.case.hosp —— 9 - mask.face.wear —— 11-hospit.nursle —— 13- mask.ppe.ventil—— 15 - case.death.number —— 17 - great.god.news --- 18 - potus
—— 16 - Italian

Live White House Briefing 4-5-2020 18:53 Live White House Briefing 4-6-2020 17:41

, \,
Ay, FOTSN ,ﬂi ANty SWCAN
R W oL W

e
N

> (E5 2
= S,
-\W AN W

04-0518 04-06 00 04-06 06 04-06 12 04-06 18

04-07 00 04-07 06 04-07 12

Figure 13: April 5 4:41 PM EST to April 7 11:07 AM EST Topics Time Series

59



Exploratory Analysis of Covid-19 Tweets using Topic Modeling, UMAP, and DiGraphs epiDAMIK 2020, Aug 24, 2020, San Diego, CA

100
—— 1 - Spanish 3 - hospit.realli.patient —— 5 - case.spread.slow—— 7 - test.case.hosp —— 9 - mask.face.wear —— 11 - hospit.nurs.le —— 13 - mask.ppe.ventil— 15 - case.death.number—— 17 - great.god.news—— 19 - French
—— 2 - like.look.work— 4 - china.thank.lockdown— 6 - day.case.week —— 8 - die.world.peopt— 10 - make.home.stay— 12 - case.death.new— 14 - Portuguese ~ —— 16 - Italian --- 18- potus —— 20 - hospit.im.peopl
80 Live White House Briefing 4-8-2020 17:46
e, iy, 2 - " L
60 M L S AN
40
o 4 2y bf Ao fhec e
WA S "
20 ; NP NI o 7
e e S e
0
04-08 09 04-08 12 04-08 15 04-08 18 04-08 21 04-09 00 04-09 03 04-09 06 04-09 09

Figure 14: April 8 9:54 AM EST to April 9 10:30 AM EST Topics Time Series

E SECONDS TO RETWEET, MARCH 24 - 28TH CORPORA

# of tweets

10°

102 4

10! 4

10000 20000 30000 40000
Time to retweets (seconds)

Figure 15: Seconds to Retweet, March 24 - 28th Corpora

60



epiDAMIK 2020, Aug 24, 2020, San Diego, CA

F CHANGE POINT DETECTION TIME SERIES
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Models were calculated using the ruptures Python package. We also applied exponential weighted moving average using the ewm pandas
function. We applied a span of 5 for March 24, 2020 and a span of 20 for April 3 - 4 datasets, April 5 - 6 datasets, and April 8 - 9 datasets. Our
parameters for binary segmentation included selecting the "12" model to fit the points for Topic 18, using 10 n_bkps (breakpoints).
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Figure 16: Change Point Detection using Binary Segmentation for April 3 - 4, 2020
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ABSTRACT

This paper presents our attempt to create an exploratory search
system CovEx for a collection of academic papers related to COVID-
19. CovEx uses concept extraction, knowledge graphs, and user-
controlled recommendation to assist users with various levels of
domain expertise in their information needs.
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1 INTRODUCTION

Exploratory search systems form an increasingly popular category
of information access and exploration tools. These systems cre-
atively combined search, browsing, and information analysis steps
shifting user efforts from recall (formulating a query) to recogni-
tion (i.e.,selecting a link) and helping them to gradually learn more
about the explored domain [23]. In this paper we presenting our
attempt to augment the set of search systems focused on COVID-
19 research literature [25] with a personalized exploratory search
system COVID Explorer (CovEx !). We hope that CovEx ability
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to support information discovery, learning-while-searching, and
personalization, the system could help a broader set of users to
benefit from the assembled collection of COVID-19 resources [22].

We start the paper with the presentation of CovEx interface and
follow with the details on concept extraction, knowledge graph
organization, and recommendation that enable the work of this
interface.

2 RELATED WORK

The CovEx system presented in this paper combines the ideas of
exploratory search with an important stream of research on per-
sonalization, user control, and transparency, It attempts to help
researchers discover their interest profiles [10], which, in turn, are
used to find relevant publications with matching concepts.

2.1 Exploratory Search

A number of real-life search tasks require a considerable amount
of learning during the search process to achieve adequate results.
These tasks are known as exploratory search tasks [4, 16]. Since
simple search systems are usually not efficient in supporting ex-
ploratory search, a range of advanced exploratory systems have
been developed and evaluated [13, 24]. More recently, few projects
in this area demonstrated that the effectiveness of exploratory
search could be improved by using a personalized system, which
builds a profile of user interests and adapts to the individual user
[5, 11, 19]. The work presented in this paper investigates the ideas of
profile-based exploratory search in the context of finding research
publications related to Covid-19 pandemic.

2.2 Controllability

User controllability has been recognized as a valuable component
of advanced information access interfaces. This research was made
popular by a stream of work on user controllable recommender
systems [14, 17]. However the value of extended user control has
been also demonstrated in the area of exploratory search. For ex-
ample, NameSieve [1] presented a summary of search results in
the form of entity clouds, which a controllable filtering and explo-
ration of results. PeopleExplorer [12] offered users an option to
re-sort people search results based on multiple user-related factors.
uRank [8] introduced a controllable interface for refining and reor-
ganizing search results. An extension of this work [7] integrated a
controllable social search into an exploratory search system.
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Figure 1: Interface Design of Covex representing different parts of the system.

2.3 Open User Profile

The idea to apply open user profiles (also known as open user mod-
els) to better support personalized information access was among
the early ideas explored in this field. Open user profiles allow users
to examine and possibly change the content of their interest pro-
files, which are used to personalize their search or browsing process.
Since the open user profiles increase interactivity, transparency, and
controllability of the information exploration process, their appli-
cation was a good match to the nature of exploratory search. While
first attempts to introduce “bag-of-words" open user profiles had
mixed success [2], more recent work focused on semantic level user
profiles demonstrated its potential for personalized exploratory
search [5, 19, 20].

3 THE INTERFACE OF COVEX

Personalized information exploration in CovEx is centered around
user interest profile[18] - a collection of keyphrases (keywords) that
express user search interests. Unlike traditional search that requires
users to specify all keyphrases in a query, CovEx supports users in
the process of gradual discovery and refinement of their interests.
It also allows the users to control the importance of each keyphrase
in recommending relevant results. CovEx interface consists of the
following main sections.

Instant Search Box. The search box (Figure 1A) is the gateway to
the system. Using an instant search approach, it allows users to
discover relevant topics without a fully formulated query. When
a user starts typing a query, a series of frequent similar keywords
appears, which helps the user to discover a range of matching topics
(e.g., cell culture and infected cells). When an item is selected from
the list, it will automatically added to the slider area (Figure 1B). at
the same time, an updated list of search results will be presented to
the user.

Similar Keywords. When at least one keyword is added to the user’s
profile, a series of five semantically similar topics appear in the
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Similar Keywords area of the interface (Figure 1B). Users can add
recommended keywords to their interest profiles by clicking on the
plus button to the right of each keyword. As the user’s profile grows
and refines, the set of recommended keywords is updated since the
system recommends instances similar to all keywords in the user’s
profile. Each recommended keyword also provides users with a
short description of the topic. Clicking on the question mark button
next to the add button, opens up a separate window containing
the abstract of that keyword’s Wikipedia entry. This information
is crucial when the user is not familiar with the recommended
keyword and needs more knowledge to decide whether the keyword
must be added to the interest profile.

Slider Area. The slider area (Figure 1C) displays the current interest
profile of the user. CovEx implements a content-based recommen-
dation approach, which generates the list of recommended results
(Figure 1D) using the interest profile. To support transparency and
controllability of this process, the interest profile is visible and di-
rectly editable by the end users. To build the profile the user can
add relevant topics as explained above as well as remove less rel-
evant keywords (using the red x) as they discover more relevant
topics or explore different interests. Sliders associated with each
keyword enable users to control the relative importance of a topic
compared to others in their profile, ranging from 1 (least impor-
tant) to 10 (most important). The use of sliders for fine-tuning of
user profile was motivated by keyword tuning approach in uRank
design [9], which was confirmed as a user-friendly and efficient
in an exploratory search context. The initial value of the sliders is
set to five but can be changed at any time. All actions within the
profile (adding, removing, or adjusting sliders) immediately affects
the search results list.

Search Results. As soon as the user adds the first keyword to the
interest profile, a table of the 20 most relevant publications is gen-
erated (Figure 1:D). The first column of the table visualizes the
combined relevance between keyphrases in the user interest profile
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and each result. The colors in the stacked-bar (Figure 1:D1) are
matched with the color of slider in the profile and the size and
opacity of each bar expresses the relevance of the result to each
profile keyphrase.The second column of table lists the titles of rel-
evant publications. Clicking on each title expands a window that
holds the abstract of the paper. The mentioned keyphrases are high-
lighted with corresponding colors. The opacity of the colors reflect
the relevance of a keyphrase to the paper and the current value of
slider for that keyphrase. To further assist the users, CovEx under-
lines all available keyphrases in the text (both in title and abstract).
Hovering over the underlined portion of the text opens a popup
window (Figure 1:D2) that enable user to (1) see the relevance of
the keyphrase to the text in a form of a vertical bar-chart, (2) add
the keyphrase directly to the interest profile, and (3) report the
improper keyphrases to the administrator for removal. The latter
helps us to improve the quality of extracted keywords and eliminate
the occasional errors in the process of extraction. Finally, last three
columns provide a link to the content of the paper, source and year
of publication.

4 THE KNOWLEDGE GRAPH

The knowledge graph consists of three main entities - publica-
tions, authors, keyphrases and their relationships - extracted from
our data set and hosted in a native graph database Neo4j?. Fig-
ure 2 presents the schematic representation of the knowledge
graph. Authors are interconnected by the relation Co-Author (based
on co-authorship) and connected to papers by the relation Pub-
lished Papers connected to keyphrases usign the Has-Key relation-
ship. The latter carries a weight that determines the strength of the
relationship between each keyphrase and the publication.

4———————————Area-of-Research
KeyPhrase Author

Co-Author

Had-Key . Published

| Paper |

Figure 2: Graph Schema representing the entities of the
knowledge graph and the relationship between them

4.1 Data Source and Graph Statistics

We used COVID-19 Open Research Dataset Challenge (CORD-19)%
as the main source of data to build the knowledge graph and extract
the keyphrases. The dataset contains 51078 document, out of which
48251 documents contain either title or abstract.

Using this dataset and the concept extraction explained below,
we generated the knowledge graph covering 48251 publications
related to COVID-19 research that have been authored by 157589
researchers. 211862 keyphrases were extracted from titles and ab-
stracts of these publications. Table 1 shows the basic statistics of
our knowledge graph.

Zhttps://en.wikipedia.org/wiki/Neo4j
3https://www.kaggle.com/allen-institute-for-ai/CORD- 19-research-challenge
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Labels | No. Nodes | Avg. Properties | Avg. Relations
[Keyword] | 211862 3 11.02
[Paper] 438251 12 12.91
[Author] | 157589 1 3.65

Table 1: Graph Statistics

4.2 Keyphrase Extraction and Weighting

We approach the keyphrase extraction problem as a sequence label-
ing task. We apply a Bi-LSTM-CRF architecture to perform this task,
which has been shown to achieve the best performance across sev-
eral public datasets [3]. The standard Bi-LSTM-CRF model consists
of three main components, the Embedding layer, the Bi-LSTM layer
and the CRF layer. Our implementation of the model is based on
the version presented in [15]%. We obtain the character embeddings
of 30 dimensions by training additional Bi-LSTM networks along
with the main model. We use the Glove pre-trained word embed-
dings of 100-dimensions®. A 300-dimension hidden layer of LSTM
units is used for both the character-level embedding model and the
main model. The models are trained using mini-batch stochastic
gradient descent with momentum. The batch size, learning rate
and decay ratio are set to 10, 0.015 and 0.05, respectively. We also
apply dropout to avoid over-fitting and gradient clipping of 5.0 to
increase the model’s stability.

We train the model with the GENIA dataset®: includes 2000 titles
and abstracts of scientific articles from Medline database. GENIA is
an fully annotated dataset, in which the annotated technical terms
cover the identification of physical biological entities (e.g., proteins,
cell types) as well as other important terms. We randomly select
300 articles for evaluating and our model achieves 82% of F1-score.

To assign weight for each keyphrase extracted from the the
document we found the distance of the keyphrase from the doc-
ument in embedding space [6]. For training the embedding for
concepts extracted from CORD documents we utilized keyphrase
embedding [21] and trained the embedding with context extracted
from CORD dataset. EmbedRank [6] is used to assign weight to
each keyphrase based on the cosine similarity between keyphrase
embedding and document embedding.

5 PROFILE-BASED SEARCH

We deploy a two-phase search process to produce the most relevant
results based on user interest profile. In the first phase a primary
list of candidate have been selected from the graph and the second
phase assure that the results are presented to the user in the right
order based on their relevancy to the query. We describe these to
phases in more details in the following:

Candidate selection. We used the Cypher Querying Language to
generate the initial list of candidate publications. At each instance
of user interaction with the system (e.g., adding/removing key-
words or tuning the sliders), the system considers all publications
connected to at least one of the topics of interest in the user profile.

4github.com/LiyuanLucasLiu/LM-LSTM-CRF
Shtps://nlp.stanford.edu/projects/glove/
Shttp://www.geniaproject.org/genia-corpus/term-corpus
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If the number of candidates are less that 20, the system uses similar
keyphrases to populate the candidate list. The process of finding
similar keyphrases is explained below.

Reordering the results. After generating the list of candidate results,
the system rearranges the results in a way that the most relevant re-
sults appear at the top of the list.In order to do that, first a complete
list of keyphrases that appear in the text (title and abstract) of each
publication, alongside with their relevancy score (weight) is being
generated. Then for every keyphrase that exist in the user interest
profile, we multiplied it’s weight with the value of corresponding
slider. Finally, the relevance score is assigned to each candidate
considering candidate’s similarity to each of profile topics and the
value of the sliders (Equation 1).

1A]
RelevanceScore(fr 4y = Z Sim(ai,f) * Wi
i=0

1)

1: Calculation of relevance score for each candidate publi-
cation

In equation 1, A is a set of tuples {(a1, w1), (az, w2), ...(an, wn) }
that represent the current state of the user’s profile (topics and
weights) and f is a given publication in the graph. a; and w; corre-
spond for i*" keyword and its slider value at the moment. Si M (ayf)
shows the value of relevance between a given keyword and a can-
didate publication in our knowledge graph that has been described
in section 4.2

Keyphrase Recommendations. To generate recommended keywords
for the current set of keywords in the interest profile, the system
generates two sets of candidate keywords using the co-occurrence
of seed keyphrase with publications and authors (using collabora-
tive filtering. Then, the system combines the number of co-occurred
keyphrases in both sets and uses it as a ranking mechanism. The
system presents the top five results to the user.

6 EXPERIENCE AND FUTURE WORK

CovEx system has been deployed online and also demonstrated
to several target users. The early results indicate that the success
of the system to a considerable extent depends on the quality of
keyphrase extraction. Moreover, the nature of exploratory search
calls for special extraction approaches. While we used a relatively
powerful approach, it was trained to model gold standard annota-
tion of individual documents in GENIA dataset. We believe, how-
ever, that keyphrase extraction has to consider the collection as a
whole increasing user chances to discover keyphrases that could
lead to other papers. We are interested to collaborate with experts
on keyphrase extraction to develop approaches optimized for ex-
ploratory search.
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ABSTRACT

The potential threat that domestic animals pose to the health of
human populations tends to be overlooked. We posit that positive
steps forward can be made in this area, via suitable state-wide
public policy. In this paper, we describe the data collection process
that took place in Casilda (a city in Argentina), in the context of a
canine census. We outline preliminary findings emerging from the
data, based on a number of perspectives, along with implications
of these findings in terms of informing public policy.
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1 INTRODUCTION

Using the epidemiology of urban health as a lens, we can study
the environment and context of a region to understand (i) the
ties and relationships of species among themselves and with the
environment, (ii) the complexity of the urban context, and (iii) the
consequences that result from these complex interactions and the
social determinants of health [9]. Ecosystems and human health are
deep-rooted on biological processes that are socially defined. The
fact that social mandates influence health-related determinations
posits a dialectical perspective to explore “social-biological” and
“society-nature” interactions, both of which contribute towards the
phenomenology of health. The transformation patterns observed
between society and the environment are continually evolving; yet,
social determinations are hierarchically imposed and are the ones
that most prominently prevail in nature [4].
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Domestic animals are a clear example of social constructs pre-
vailing over biological ones. In their case, dynamics within the
population are defined by social norms and standards, as well as
political and cultural practices. The number of animals in a given
region depends on the availability of resources (food, water, shelter)
and human acceptance of the particular population. This is the
reason why canine ecology is deeply interconnected with human-
related activities [7]. Ongoing development of regions results in
changes in habits and behavior of their inhabitants, such as the
increase in the number of companion animals that are now part of
households, especially dogs and cats. The bond between humans
and companion animals has both positive and negative effects on
health. Examples of the latter are zoonoses, animal bites, and pollu-
tion. It is worth noting that all the concerns become more critical
when these animals have access to public roads [8].

Policy and campaigning messages to promote a healthy human-
animal coexistence depend on a better understanding of the com-
panion animals’ social placement and dynamics in a region. This
can be achieved by collecting representative data and analyzing
the demographic characteristics of animal populations, local traits,
and natural human-animal interactions [3]. Our study focuses on
the data collected in Casilda (Santa Fe), Argentina. For decades,
the local community has demanded that the city council address
concerns related to dog ownership and welfare. In fact, the city
council introduced an ordinance concerning the canine census in
2008 [5]. However, there has been a long delay before we conducted
the first census in 2018 due to a lack of study protocols.

In this paper, we present the results of Casilda’s first-ever do-
mestic canine census. Doing so involved an interdisciplinary group
of faculty and students in epidemiology, public health, ethics, and
legislation for veterinary sciences, statistics, and computer science,
who were mindful of the economic and political constraints inher-
ent of the region and designed a protocol for data collection and
conducted the associated analysis. The main objectives guiding our
work include:

e Providing an exhaustive description of Casilda’s domestic canine
population. To do so, we conducted an empirical exploration of
census data; this revealed scientific indicators that allow assess-
ment of the quality of life of canines, along with the quality of
their interactions with humans.

o Identifying new problems that emerge from the surveyed ca-
nine population can be addressed by new public policies, thus
responding to the demands of the region and its inhabitants [1].

Our work lays the grounds for future work in this area by in-
troducing the necessary protocols that could be used in similar
studies. Moreover, it aids the local government in making informed
decisions in response to the existing canine-human problems.
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2 PROTOCOL FOR DATA COLLECTION

We collected census data and conducted systematic probabilistic
sampling by areas. In establishing these areas, we considered differ-
ent traits (social, environmental, and economic) that characterize
Casilda (population 37,441). This resulted in the 3 geographical
areas (Figure 1): Area 1 (5.22km?), upper/upper middle class; Area
2 (3.82km?), middle class; Area 3 (1.50km?), working/lower class.

pr i

Area 2

Area 1

o

i
4

Area 3

r

Figure 1: Geographical areas considered in the census.

Data collection took place in June 2018; involving a team of 80
students and 18 faculty in the Epidemiology Department at Univer-
sidad Nacional de Rosario !. The surveyed area included 60 blocks
(1,189 households that resulted in 486 voluntary responses). The
team reported a general low predisposition on behalf of household
occupants in taking part in the census. This rendered the sample
insufficient for statistical inference. To address this limitation, the
team sub-sampled 125 new households to survey [2].

For data collection, the team created a dynamic form with response-

depended questions using Google Forms. The questionnaire in-

cluded 26 questions (Table 1), some closed-ended and others multiple-
choice; grouped by data related to households, household occupants,

canines, responsible ownership, and general. Google Forms was cho-

sen as it is a free tool that eases immediate digitization of the

collected data, reducing operational costs and the use of paper —

these are constraints that influenced data collection decisions, given

that resources at public universities in Argentina are scarce.

3 ANALYSIS AND DISCUSSION

Below we summarize general observations that emerged from col-
lected data; these are meant to offer context of the geographical
area and human and canine populations considered in the census.
Thereafter, we present detailed findings from census data, along
with their implications for public policy.

3.1 A General Description of the Population
Based on collected responses, we analyze the data of 841 dogs, uni-
formly distributed across gender. We summarize sanitary conditions
and sterilization in Table 2. Other insights include:

e Breed: 33% were pure-breeds, the rest mongrels.

! Training for data collection is part of the curriculum for one of the epidemiology-
related classes offered at Universidad Nacional de Rosario [6].
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Table 1: Questionnaire used for data collection purposes.

Type ID Question

Area

Address

Household type

Services (e.g., gas, water, etc.)

Are they in and willing to answer questionnaire?

How many people live in the household?

Breed

Gender

9 Age

Size

Origin (e.g., adopted, found, etc.)

Sterilized?

Where did the sterilization take place?

If not, why not?

Where does your dog live? (patio, indoors, etc.)

How often in your dog on public roads?

17  If veterinary services are required, where do you go?

How often do you deworm your dog? (internally)

How often do you deworm your dog (externally)

In the last year, have you vaccinated your dog for rabies? Where?
In the last year, have you vaccinated your dog for Leptospirosis? Where?
Are there any other animals in the household. Elaborate.
In the last year, have you experienced any of the following:
bites, dog involved in accident, chasing bicycles

and/or people walking, saw canine mistreatment, etc.

Do you know your neighbourhood’s health center?
Regarding your neighbourhood’s health center

For your own health-related matters, where do you go?

Household

Household
occupants

Canines
(repeated
for each
dog in
household)

® N U W N =

Responsible
ownership

General 23
24
25
26

o Size: close to 50% were small breeds (e.g., Beagle, Poodle Toy),
33 % medium (e.g., French bulldog), and the remaining, larger
breeds (e.g., Golden retriever).

e Origin: 74% were either adopted or found, 20% were purchased,
and for the remaining ones, survey respondents did not recall.

o Age: 498 were adults between 1 and 7 years old, 154 were puppies
(i.e., less than 12 months), and the remaining 189 were seniors
(i.e., 8 years or more).

e Area: 233 in Area 1, 401 in Area 2, and 207 in Area 3.

o Inference from sampling: 13,557 dogs in households, 4,863
strays [6].

Table 2: Overview of surveyed canine population

Canines Total Male Female
Surveyed 841 422 419
Sterilized 318 67 251
Internal deworming 692 344 348
External deworming 728 364 364
Rabies vaccination 440 219 221
Leptospirosis vaccination 299 137 162

3.2 Findings and Implications

To further characterize Casilda’s domestic canine population, and
more importantly, identify issues directly related to this population,
we further examined census responses from various perspectives.

3.2.1 Sterilization. We see a statistical significant correlation be-
tween gender and age, when it comes to sterilization (Chi-square:
24.85; p-value= 5.38e-05). As reported in Table 2, close to 40% of
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Figure 2: Correlation with respect to sterilization.

domestic canines have been sterilized; for the most part, females.
It is also apparent from Figure 2 that sterilization rarely occurs
on canines less than 12 months old; the majority of sterilizations
happening on adult specimens (i.e., aged 1 to 7). As for why owners
bypass sterilization (question 14 in Table 1), close to 30% “do not
think it is necessary” and 3.4% “disagrees with the premise of steril-
ization”. It is of note that 13% of the owners “plan sterilization in the
future” and 1.3% have yet to do so “due to economic impediments”.

Female sterilization is a positive discovery, especially when con-
sidering that it occurs at an age range that correlates with the
highest fertility peaks. Unfortunately, lack of sterilization in males
counteracts intended population control. Further, the high pro-
portion of unsterilized males is a definite concern that must be
addressed. Their social behavior entails wandering and territorial-
ity, often resulting in dog fights, bites of people, the transmission
of diseases, and traffic accidents. Owners’ views against steriliza-
tion reflect that population control policy must be thought of as
a comprehensive scheme. The system must ensure the economic
and geographical accessibility to an operating room. It must also
include educational strategies that raise awareness of the negative
consequences of non-sterilization.

3.2.2  Sanitary Conditions. We examine the degree of influence, or
lack thereof, that the number of dogs per household has on traits
related to responsible ownership practises (questions 18-21 in Table
1). We find that deworming (internal or external) and vaccinations
for rabies are not conditioned by the number of dogs in a household.
There is a statistical significant correlation between vaccination for
Leptospirosis and number of dogs per households, where more dogs
implies a higher likelihood of overlooking this type of vaccination
(ANOVA, p-value = 0.001; Figure 3b).

These results show the broad access that the local population
has to the rabies vaccine. In Argentina, Law No. 22953 establishes
this vaccine as mandatory. The city sponsors free vaccination cam-
paigns, together with the application of dewormers. Further, de-
worming is a low-cost procedure when performed at private veteri-
nary clinics. On the other hand, the Leptospirosis vaccine is not part
of sponsored campaigns, and Leptospirosis vaccination at private
clinics is very expensive. Therefore, state policy responding to this
concern should include targeted campaigns on high-risk areas.

3.2.3  Socio-economic Influence. When using socio-economic fac-
tors as lenses to drive exploration, census data reveals a correlation
between geographic areas and number of dogs per households (Fig-
ure 3a Chi-square: 22.87; p-value= 0.00013). Upon deeper inspection,
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Figure 3: Average number of dogs per household distributed
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Figure 4: Canine sterilization across areas. “Not known” re-
fer to cases when the dog owner was not present to answer.

we see that the highest percentage of unsterilized dogs come from
households in Area 3, whereas most sterilized dogs come from
households in Area 1 (Figure 4). Based on Pearson’s correlation
among area and reasons given by household owners to justify they
do not favor sterilziation (Figure 5), we see that the reason that
yields the highest correlation for households in the least affluent
area (i.e., Area 3) is “Lack of time”, followed by ‘T will do so in the
future”. On the other spectrum, households in more affluent areas
(i-e., Area 1 and Area 2) justify not sterilizing their dogs since they
“Lives inside” and “Would like to breed in the future”, respectively.
The results above evidence the fact that low-income regions
should be the focus of attention for public policy related to respon-
sible pet ownership. In these regions, it is imperative to ensure eco-
nomic and geographical assistance by performing State-sponsored
(i.e., free) sterilization in peripheral neighborhoods. Despite the
fact that lack of time is not an impediment for sterilization in Areas
1 and 2, sterilization rates are not 100% in these areas (Figure 4);
on Area 3, lack of time is the main issue hindering sterilization
procedures. These findings could suggest that education and aware-
ness campaigns would be more effective in Areas 1 and 2, whereas
those mentioned earlier sponsored and geographically-targeted
sterilization procedures could be more effective for Area 3.

3.2.4 Humans. Canines with frequent access to public roads pose
a risk to human health. We identified 687 dogs that have access
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Figure 5: Pearson’s correlation for area with respect to rea-
sons why household owners chose to avoid sterilization.

to public roads; 362 males, 325 females (question 16 in Table 1).
As reported in Table 3, only 50% of these dogs are vaccinated for
rabies—a low percentage when considering that this vaccination is
mandatory. The percentage decreases even further for Leptospirosis
(~ 30%). Compared to vaccinations, the percentage of frequently-
dewormed dogs with access to public roads is much higher (~ 75%).

The high proportion of dogs with access to public roads is a threat
to public health. Because of unvaccinated dogs, the risk of exposure
to diseases increases. Leptospirosis is an endemic zoonotic disease
in Casilda. Thus actions by the State to address the low vaccina-
tion coverage are a must. Rabies-related concerns are much more
worrisome: given that in addition to being a lethal zoonosis, there
is evidence of the circulation of this virus in Casilda, vaccinations
rates reach 100%. On the upside, the high proportion of dewormed
dogs is positive for health care, as it prevents disease spread to
other dogs and humans, which can be done via contaminated dog
feces or ticks, to name a few.

3.25 Overpopulation. Dogs with access to public roads may cause
an unexpected increase in canine populations: specimens that have
not been sterilized, yet have access to public roads are bound to be-
come a link in a chain of unplanned litters. As shown in Table 3, 60%
of females with access to public roads are sterilized, a percentage
that drastically decreases among males (~ 14%).

When campaigns fostering sterilization are not prominent, dog
population growth rates remain high. Given the significant propor-
tion of unsterilized females with access to public roads, compounded
by the very high percentage of unsterilized males, breeding like-
lihood is high. That is why sterilization mechanism should be in-
tensified, with a greater emphasis on males and social sectors with
economic difficulties (i.e., low-income areas). These actions should
be supplemented with an educational policy that emphasizes the
importance of long-term behavior change regarding responsible
pet ownership, specifically adopting new habits that foster health
care for dogs and their environment.

4 CONCLUSIONS

We have presented the analysis results we conducted on data col-
lected in response to a domestic canine population census.

70

Apa, et al.

Table 3: Canine population that has access (on its own,
leashed and/or unleashed) to public roads (n=687), based on
vaccination, deworming, and sterilization perspectives.

Canine Population

Total Male Female

Vaccination Rabies 052  0.49 0.54
Leptospirosis  0.33  0.30 0.35

Deworming Internal 0.74  0.72 0.76
External 075  0.74 0.75

Sterilization 0.36 0.14 0.60

Outcomes from our empirical exploration reveal representative
traits of Casilda’s canine population, which till now were unavail-
able. We were also able to recognize potential risks originated from
the population under study, mainly the transmission of zoonosis
and uncontrolled breeding. At the same time, we identified geo-
graphic areas and social stratum that should be of primary concern
to the city council when it comes to implementing immediate ac-
tions regarding sterilization, improvement of sanitary conditions,
and education related to responsible pet ownership. This study
serves as preliminary evidence on the importance of generating in-
formation on canine demography and its link with humans and the
environment at the national level. An adapted version of the pro-
posed data collection/analysis protocol — based on lessons learned
and limitations we observed - could be included as part of the
national population census, which takes place every ten years.
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ABSTRACT

The ongoing COVID-19 pandemic, due to the novel coronavirus
SARS-CoV-2, has affected not only the healthcare system but the
whole society worldwide. While a large number of medical works
and researchers are battling the pandemic crisis on the front line,
with large amount of accessible epidemic information, data-driven
research and learning based approaches could provide rich insights
about the challenge on the population and society level. In this work,
we apply a recurrent-network based model to study the epidemic
data in the United States. By incorporating both the epidemic time
series and socioeconomic characteristic data, our model provides
both a promising predictive power in forecasting the trend of new
confirmed cases, and an illustrative description about the interplay
between the local epidemic evolution and demographic features.
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1 INTRODUCTION

In late 2019, the COVID-19 outbreak initially detected and reported
in Wuhan (Hubei, China) due to the severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2), spread rapidly, firstly across
regions in China and east-Asian countries, and then, since late Feb-
ruary, to nearly all continents in the world. As of June 15, 2020,
there have been more than 7.91 million cases confirmed across
225 countries and regions, associated with 433 thousands deaths
[22, 26]. Declared as a pandemic by the World Health Organization
on March 11, the COVID-19 outbreak has brought severe challenges
to not only local healthcare systems (especially in underdeveloped
areas) but our society as a whole. At the same time, a large number
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of related research have been emerging recently in various subjects
and fields, attempting to contribute to the battle against COVID-19.
Beside pharmacologic and genomics studies on the SARS-CoV-2
virus, data-driven research both on the spread of COVID-19 among
local population and on general social impacts brought by the pan-
demic have been providing valuable insights especially for local
policy makers.

On the one hand, various types of sequential models have been
implemented to study the spreading behavior of COVID-19 in
a generic population, including compartmental model based ap-
proaches [3, 5, 12, 18], which are motivated by conventional dynami-
cal models in epidemiology, and deep learning based nonparametric
approaches [19, 24]. While the second class, i.e., artificial-learning
base approaches, might produce better predictions on disease re-
lated statistics, it lacks interpretability for the most part due to the
black-box nature of neural network estimators.

On the other hand, the interaction between social environments
and the local COVID-19 outbreak remains an important topic. The
identification of highly related exogenous factors that impact the
local epidemic evolution significantly, e.g., the local population
density and the local age structures, is of great importance. In
addition to understanding dominant environmental factors that
govern the outbreak, the relation between the epidemic evolution
and socioeconomic characteristics could potentially also reveal the
inverse impact of the COVID-19 on a local community [1].

In the current work, we apply a learning-based approach both to
produce an accurate prediction about a near future, and to reveal
the interplay between environmental factors and the epidemic evo-
lution. To accomplish this, we implement a neural-network based
sequential model, and integrate the time-varying epidemic informa-
tion, i.e., related statistics including confirmed cases and deceased
records, with environmental factors including both dynamical ones,
e.g., local restriction policies, and static ones, such as demographic
features. Environmental factors enter the model via an "kick-start"
mechanism !, which, after being fixed through training, offers a
smoking-gun for the relevance of different factors to the epidemic
evolution.

The rest of the paper is organized as follows. Section 2 intro-
duces the ongoing pandemic situation and mentions some related
works which motivate our study. In section 3, we enumerate several
candidate factors that could potentially affect the epidemic evolu-
tion process significantly and discuss the potential epidemiological

!See Section 4 for details.
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dependence, along with other important socioeconomic character-
istics, which could be used to analyze the inverse social impact of
the ongoing public health crisis. Section 4 elaborates our applica-
tion approach in details, explaining both the information flow in
the model and the way to extract the relevance of environmental
factors to the local epidemic outbreak. Section 5 explains model
training, including data sources, model structures, and training
results. In section 6, we firstly demonstrate the prediction power of
the trained model, and then discuss the relevance of different envi-
ronmental factors to the epidemic emergence extracted from the
trained representation. Finally, we summarize our work in Section
7 and discuss potential directions for further investigations with
more data and complex models.

2 THE ONGOING PANDEMIC AND RELATED
WORKS

As of June 15, 2020, the COVID-19 has hit countries worldwide. We
summarize the latest pandemic situation in Table 1.

Category Statistics
Number of countries reporting COVID-19 cases 225
Number of confirmed cases reported worldwide | 7,912,426
Number of deceased cases reported worldwide 433,391
Number of recovered cases reported worldwide | 377,131
Currently estimated fatality rate 5.5%

Table 1: Summary statistics of the ongoing COVID-19 pan-
demic situation worldwide. Data is from the CovidNet
project [26].

Governments and organizations across the world have been tak-
ing measures at different levels in response to this pandemic crisis.
Extreme measures were adopted by the Chinese government in
Wuhan, where a complete lock-down of the whole city was im-
plemented. This has been proved later to be very effective to slow
down the spread of SARS-CoV-2, the contagious level of which was
later revealed to be much higher than two previous deadly viruses,
i.e.,, MERS and SARS. The response in Wuhan then inspired other
countries and regions, including South Korea, Thailand, Italy and
etc., addressing the importance of social distancing. In spite of the
fact that extreme measures have been proven to be effective in fight-
ing against the coronavirus spread, regional lock-down remains
a difficult decision to be made for any local government taking
into account the economic expense. Therefore, it is of extreme im-
portance to provide policy makers necessary tools to both predict
the future trend and understand the social impacts brought by the
public health emergency [7, 13, 20].

On the prediction side, conventional Susceptible Infectious Re-
covered % (SIR) model based approaches have been widely imple-
mented [3, 12, 18], with model parameters estimated from regional
epidemic data. Motivated by the data-driven estimation process,
deep-learning models have also been hybridized into prediction
models [5]. While the SIR model and its variants indeed could

20r Susceptible Infectious Removed in some literature, which also considered deceased
cases.
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roughly capture the epidemic law of a generic disease spreading
behavior, there are two major problems in practice:

e ODE systems capture continuous dynamics, howbeit real-
life epidemic data is usually collected in discrete time. There
are also delays in case reporting, which, even worse, never
uniform in time 3. Therefore, there exists a significant mis-
match between the true ongoing epidemic process, which
can be approximately described by ODEs, and the reported
data, which highly depends on human-involved operations.

e SIR and its variants only take into account the lowest-order
dynamics, which includes the linear terms describing popu-
lation transitions between compartments and product terms
describing interaction/contact between compartments, while
keeping transition parameters constants. In reality, how-
ever, human responses would also evolve along with the
epidemic evolution, which, reversely, could remarkably af-
fect the transmission (due to restriction policies and change
in crowd behaviors) and the fatality (due to the improved
medical response) of the disease.

Above problems, especially the first one due to human operations,
make the task of prediction with compartmental models impractical.

Beside the predictive power, another drawback of ODE based
compartmental models is the absence of environmental factors. The
trend prediction alone is not enough for designing policy. Instead,
understanding the interplay between environmental factors and the
epidemic evolution could benefit local policy makers [7, 13, 20], and
the dependence of the local outbreak on demographic features and
transportation data is essential to calibrate restriction/reopening
strategies [6]. At the same time, it is also of great importance to
examine the social impact of the public health emergence on the
local community, especially on different population groups charac-
terized by genders, races, and ages. Most recent works only provide
either qualitative arguments [21] or simple statistical analysis, e.g.,
the linear regression [1], which has limited modeling capability.

Compared with above methods, our current approach attempts
to incorporate environmental factors into the prediction module
directly. The explicit factor-dependence and therefore interpretabil-
ity of the model are available via a proper analysis on the learnt
representation. Details of our modeling and training can be found
in Section 4 and 5.

3 THE INTERPLAY BETWEEN
ENVIRONMENTAL FACTORS AND THE
COVID-19 EPIDEMIC

Before introducing specific model structures and training designs,

it is necessary to discuss and distinguish candidate environment

factors, which either directly govern the epidemic evolution process,

a.k.a. exogenous factors, or reveal the social impact of COVID-19

from essential perspectives.

3.1 Dominant factors of the transmission

In reality, many exogenous factors would affect the transmission
beside disease characteristics. Most intuitively, there is a higher

3For example, the obvious periodic (week-wise) pattern in the U.S. death data is due to
the reporting schedule of the official departments.
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probability in regions with denser population distributions that a
fast outbreak would emerge. New York City, being the most densely
populated county-equivalence in the United States, would serve
as a typical example. The outbreak in NYC evolved rather rapidly
from the beginning and, as of May 30, 2020, NYC has accounted for
than 55 percents of cumulatively confirmed cases across the whole
state.

Another dominating factor for transmission would be the restric-
tive order issued by the local government. Restrictions have been
implemented onto various industry/business activities as well as
local residents’ daily life. While industry/business restrictions differ
region by region, and are usually difficult to study quantitatively, in
the present work we instead use the restriction on local residents’
daily life, i.e. the stay-at-home order or its equivalencies, as an ag-
gregated representation of the local restriction level to capture the
overall impact of local policies*. Importantly, the change of the re-
strictive level, from the no-restriction stage, to the restrictive-order
stage, and finally to the reopen stage, results into a time-varying
transmission behavior of COVID-19, which is in contrast to ODE-
based compartmental models that assume a constant transmission
factor f.

More generally, the interaction within a local population con-
tributes significantly to the transmission. We therefore adopt the
average annual enplanements per capital [16] to capture the active
level of human interactions.

3.2 Vulnerable Population Groups and
Descriptive Factors

It has been confirmed by data from multiple countries and regions
[9, 14, 17] that the patient’s age is highly related to the development
of severe pneumonia symptoms. Aged people are in general more
vulnerable to the virus. We therefore incorporate the age structure
as an important demographic category.

More generally, the physical condition of individuals would re-
sult into differences in the probability of infection. For instance,
people with poor respiratory condition experience higher risk of
being infected. We therefore include the population with high risk
[10] as an input feature of modeling.

3.3 Smoking-gun factors for social impact
analysis
While above mentioned environmental factors focus more on the
biological aspects of the epidemic evolution, there are also other
socioeconomic characteristics, which, although not biologically rel-
evant, could be potentially correlated with the evolution behavior.
For example, a study [1] focusing on the New York data has
shown that a higher probability of positive testing rate is in poorer
neighborhoods, in neighborhoods where large numbers of people
reside together, and in neighborhoods with a large black or immi-
grant population. At the same time, however, people residing in
poorer or immigrant neighborhoods were less likely to be tested.
As a result, an understanding of which types of neighborhoods are

“4Practically, this is also the only consistent data category accessible to the general
public
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disproportionately affected by the pandemic requires an examina-
tion of how socioeconomic characteristics correlate with different
epidemic statistics.

Motivated by the above discussion, we selected several socioeco-
nomic characteristics, which are not only related to the epidemic
statistics from the pure data perspective, but also important in
revealing potential disproportions of the COVID-19 impacts, in-
cluding local gross domestic product (GDP) per capita and local
race compositions.

4 A LEARNING BASED APPROACH

Now we introduce our learning based approach which, in a nut-
shell, implements a recurrent-neural-network model for the trend
prediction along with an embedding of environmental factors to
extract relevant information. There are two classes of inputs: the
epidemic time series, including both confirmed cases and deceased
cases, and environmental socioeconomic factors.

The epidemic time series data enters the learning module through
a stacked Gated Recurrent Unit (GRU) model, which is well-known
for both its power in dealing with sequential data by incorporating
history information properly, and its efficiently simplified structure.
We cast a fixed-length (L) sequence with recent history informa-
tion to predict each subsequent data point, by implementing a
sliding window on the full time series. Importantly, we would like
to address that this GRU-based model structure is powerful in the
following sense:

(1) Firstly, this GRU model structure, at least, is capable of cap-
turing the dynamics of compartmental models in the discrete-
time regime of compartmental models, where the value of
the next time-step only relies on the current state. For in-
stance, this can be easily shown through the following set
of difference equations:

St+1 =St = —f -5t - iz,
ipp1 =g =Pse-ig—y-ip

Teyl — e =Y - i,

1)

where {s¢, iz, r;} represent susceptible, infectious, and re-
moved population fractions respectively, and {f, y} describe
transmission rate and removal rate of the disease. This set
of equations can be viewed as a discrete version of a SIR
model [2], and they clearly only depend on the current snap-
shot of epidemic statistics; The above dynamics, in the ideal
scenario, can be captured by a GRU model with only L = 1
sliding-window length.

(2) Mathematically, the above difference equations in Eqs.1 are
not always a legitimate format. Indeed, a rigorous transfor-
mation from the continuous time regime to the discrete one
requires much more caution, and the exact solution form
would bring in more complicated terms with both longer
history dependence and higher-order polynomial terms. To
confront this difficulty, we apply both a sliding window with
longer length L > 1, and more layers in the GRU module to
capture complicated nonlinear terms.

Another input feature with time-varying values is the status of
the local restriction policy, i.e., the stay-at-home policy or similar
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Figure 1: The 1-step-ahead prediction task on testing states: NJ, MI, SC, AZ, the data from which has never been accessible to
the model. The predicted curves follow the true values closely.

measures °, which, different from numeric data, is categorical with
a binary status: "stay-at-home" or "reopen". It is naturally expected
that the epidemic evolution would be different under different re-
striction statuses. Therefore, we apply a "double-channel” structure
in the GRU module: a sequential data point would enter channel-1
if there is a restriction policy on the corresponding date, and would
enter channel-2 otherwise.

In addition to time-series data, we have also integrated the fol-
lowing list of environmental factors as static input features:

o local population density;

o local GDP per capita;

o local age structure (fractions of 6 non-overlapping age groups);
o local race structure (fraction of 7 different race categories);
e high risk population;

e local annual enplanements per capital;

e local restrictive order level;

where all factors are summarized and represented on state level. Dif-
ferent from the sequential data of epidemic statistics which enters
the model via a black-box, although reasonable, as explained above,
model structure, we would like to investigate the interplay between
the epidemic evolution and various socioeconomic characteristics.
Therefore, when we incorporate the input of environmental factors,
we apply a linear embedding, which produces interpretable weights
on each input dimension. Technically, the embedded representation
of environmental factors is taken as the initialization of the hidden
state in the GRU model, which we call as a "kick-start" mechanism.

Through the above design of the information flow, we implic-
itly construct a desired interaction between environmental factors
and the epidemic time series data: these two input-categories are
conducted to interact with each other via various gates in the GRU
module. From an epidemic perspective, within the GRU structure,
the hidden state could be regarded as an evolving "environment",
whose initial status, i.e., before the first infectious case emerges,

5This includes the stay-at-home advisory issued in Massachusetts, the curfew issued
in Puerto Rico, and so on
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only depends on exogenous demographic factors of the local com-
munity.

5 MODEL TRAINING

In this section, we elaborate the practice of model implementation,
including data sources, hyperparameters of implemented model,
and details of the training procedure.

Sources of Different Data Categories.

COVID-19 case data: Case data is from the CovidNet project
[26], including confirmed and deceased counts of 50 U.S.
states and the District of Columbia, ranging from January
21, 2020, to June 14, 2020.

State restriction policy: Restriction policy information is
collected from "The Coronavirus Outbreak” forum on the
New York Times [23].

Population and density: We have used population data
from the U.S. Census Bureau [25].

Population with higher risk: Population in each state
with higher risk to develop severe symptoms are estimated
in [10], and used as an exogenous factor in our application.
Age structure data: We have used the age structure dataset
built by the Kaiser Family Foundation [11].

Race structure data: Race structure data is collected from
the COVID Tracking Project [4].

Annual enplanements data: We collected the data of an-
nual enplanements per capital in each states (not including
D.C.) from the U.S. Department of Transportation [16].
Gross domestic product per capita: We collect the data
from the United States Census Bureau [25]

Hyper-parameters of the Implemented Model. Our model is
implemented with an embedding module, recurrent module and
output module. The embedding module sparsely encodes the 21-
dimension state-specific demographic vector into a 100-dimension
vector; the recurrent module is using 3 stacked GRU layers with 100-
dimension hidden states, the recurrent module takes the previous
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embedding result as its first latent state and the windowed state
total confirmed cases and new cases as inputs; a dense layer is
used for the output layer in order to predict the target. We trained
the model using Adam optimizer [15] with le-4 learning rate and
discounted the learning rate with a factor of 0.3 if the training loss
didn’t decrease over 20 epochs. The model is trained on an MacBook
Pro with 6-Core CPU.

Details on the Training Design and Process. The detailed model
architecture is demonstrated in Figure. 3. We use a five-day window

time-series historical data and use recurrent module for predic-
tion. The input data for recurrent module are total confirmed cases

(cc) and new confirmed cases (dc), we pro-process each of them

into two series: one contains value only when there is restriction

policy undergoing (cc_res and dc_res) and another only contains

value when there is no restriction policy (cc_nores and dc_nores) as

shown in the model architecture. The processed state demographic

data feeds into the state demographic embedding layer, and we use

Sigmoid activation function inside the layer. All three layers of GRU

receive the embedding output as its first hidden state ho. Root mean

squared error(RMSE) is chosen as the loss function. We separate

our data firstly withholding 5 states as test data. The others are

processed as windowed input-output pairs and separated into a
proportion of 80% for training and 20% for evaluation. The model

is learned via back-propagation utill convergence.

6 RESULT ANALYSIS

As mentioned earlier, the current work targets both a prediction
of the epidemic evolution, and an understanding of the interplay
between environmental factors and the local epidemic outbreak. In
this section, we discuss the two aspects with the trained model.

6.1 Prediction of the Epidemic Evolution

As we have applied the random shuffling during training® among
the training data, which is transformed into sequence-to-point pairs,
we would demonstrate the prediction power in two ways:

(1) "1-step-ahead prediction" on testing states: during the train-
ing stage, we have randomly eliminated several states from
the complete dataset 7. We would test the performance of the
trained model on these states, whose history records have
never been acknowledged by the model;

Long-term prediction from an auto-regressive process: the
model was trained for 1-step-ahead prediction only during
the training stage, therefore long term prediction would be
a non-trivial demonstration for the model’s capability of
capturing the true dynamics.

@

Figure 1 shows the performance of the model on the 1-step-ahead
prediction task. Clearly, even though data from testing states have
never been accessible to the model, the trained model can still
predict the future value very well. It is therefore reasonable to state
that, rather than over-fitting the given data during the training
stage, the model instead capture the general law of the epidemic
evolution in a generic population. The existence of such a law is

%See details explained in Section 5
7In our practice, we have randomly selected 4 states for testing purpose: AZ, MLNJ,
SC.
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not a surprise, and has already been hypothesised in conventional
compartmental-model methods. However, the general law could
easily become intractable from real data due to the human operation
in reporting schemes 8. By applying the proposed learning-based
method, we extract this general law from the noisy real-life data.

Compared with the 1-step-ahead prediction task, the long-term
prediction is much more challenging, in the sense that the task
nature has deviated from the training stage. The performance of
long-term predictions is shown in Figure 2. While in some states,
the deviation from the true data become visible, the overall trend
has still been well captured by the auto-regressive process, except
noisy fluctuations. In practice, the long-term prediction could pro-
vide more timely information to policy makers, and hence is more
valuable than I-step-ahead predictions.

6.2 Relevance of Environmental Factors

To reveal the interplay between environmental factors and the
epidemic evolution, we start from an analysis on the relevance of
each input feature to the dynamics. As introduced in Section 4,
static environmental factors, after being embedded through a linear
transformation, enter the model via the "kick-start" mechanism.
Due to the simple structure of this embedding module, we could
easily identify the relevance of input features by examining the
Frobenius norm of each embedding vector.

Firstly, there are two classes of population structure data: the
age structure and the race structure. Figure 4(a) and 4(b) show the
relevance of different age groups and race groups respectively.

In the age group relevance chart, it is clear that the two young-
age groups, i.e., age from 19 to 25 and 26 to 34, show the highest
relevance. This is consistent with the demographic report released
by CDC on age distribution [8], where the age group 18 — 44 con-
tributes the largest portion to the confirmed cases.

Among all race groups, the two groups, Asians and Black or
African American alone, appear to be more relevant in epidemic
dynamics, while both White (non-Hispanic) and Hispanic/Latino
show lower relevance. On the other hand, it is interesting to note
that, according to the report released by CDC [8], White (non-
Hispanic) and Hispanic/Latino contribute largest portion in the
confirmed cases. While the share in confirmed cases may be more
related to the absolute population size of different race groups,
our relevance analysis, instead, focuses on the fraction of each
race group in a certain state. The above mismatch between the
results obtained via the two descriptive perspectives suggests a
potentially existing disproportional impacts of the COVID-19 on
different groups. While the above argument does not provide a
rigorous causal analysis, it illustrates the importance of diversity
of perspectives when studying the social impact of COVID-19.

Beside the above two types of population structures, we also
notice a high relevance (1.6810614) of enplanements data to the
epidemic dynamics. This confirms our earlier hypothesis that the
enplanements data could be used as a nice indicator for the active
level of local socioeconomic activities.

8See Section 2 for detailed discussions.
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Figure 3: Model architecture

7 CONCLUSIONS AND DISCUSSIONS

We have demonstrated the predictive power of the proposed recurrent-
network based model, and discussed the relevance of different en-
vironmental factors by studying the embedding vector of each
socioeconomic characteristic.

On the prediction side, the proposed model performs well in both
1-step-ahead prediction on new states and long-term prediction tasks.
One could conclude that the recurrent structure has successfully
extracted and captured a general law of the epidemic evolution in
a generic population, from the real-life noisy data.

On the other hand, studying the relevance of environmental
factors to the epidemic dynamics enables us both to identify poten-
tial factors that contribute most to the disease spreading, and to
understand the social impact of COVID-19 on the local community.
More specifically, we noticed that young age groups and average
emplacements are highly relevant to the dynamics, verifying the
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Figure 4: Relevance of different age-group fractions 4(a) and
race-group fractions 4(b). The relevance index is defined as
the Frobenius norm of the embedding vector of each input
feature.

fact that socioeconomic activities contribute significantly to the
disease spread; besides, there might exist a disproportion of the
social impact on different race groups brought by the COVID-19.

In general, one could expect that more insights about the on-
going public health crisis could be gained through data-driven
research. Besides medical and clinical studies that directly battle
the COVID-19 emergence, it is also important to obtain a more com-
plete understanding about general social impacts of the pandemic
on the population and society level. This does not only assist local
policy makers in decision making, but also helps the whole society
to confront the challenge together.
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ABSTRACT

Based on the four data sets including the epidemic situation data
set, SSE Composite index data set, primary sector indices dataset
and rumor dataset, this paper studies the impact of COVID-19 on
them and discussed what action the government should take in
the further epidemic. For the stock market, we use the VIF and
ANOVA to screen the independent variables and adopted the linear
regression to judge the impact of the global and Chinese epidemic
on the Chinese stock market as a whole and various sectors in stock
market. In terms of rumor, TF-IDF is calculated to generate a word
cloud, and the LDA model is used to find the keywords of different
topics.

In the results of data analysis, we can see that the number of
people daily cured in China and the global daily recovery rate has
a positive impact on the stock market, no matter index or volume,
while the global daily confirmed number hurts the stock market.
Also, different industries have different effects on the stock index.
For example, when the number of people recovered in China in-
creased, the SSE telecommunication services sector index increased
rapidly, but the SSE health care sector index decreased. Because
of the influence on the stock market, the relevant macro-control
policies issued by the state are necessary. In terms of the analysis
result of rumors, people are mainly concerned about the spread
of the epidemic, including the use of protective equipmentdisin-
fection tools and how long the virus will last in different fabrics.
At the same time, due to the lockdown of Wuhan, people were
also anxious about the situation in Wuhan. This is also an entry
point for the government to formulate relevant publicity policies.
It requires the government to promptly announce the epidemic
situation, especially in Wuhan, a relatively severe area, organize
competent medical experts to publicize virus-related knowledge
on various platforms, and improve the productivity of relevant
protective products, such as masks, to reduce people’s anxiety
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1 INTRODUCTION

When the outbreak occurs, the economy of certain country and
the world will be affected. Just like the warning of SARS to us[5],
when a new epidemic happens, we can predict the impact of the
outbreak on the economy and build a macroeconomic model to
ensure the security of the country to a certain extent. At the same
time, rumors will cause panic[9], so the government needs to take
relevant measures to solve the disinformation in time. In 2020,
we are facing the global impact of COVID-19. The economy and
rumors are also problems that need to be addressed in the COVID-19
epidemic. This paper’s core is to explore the impact of the COVID-19
on the two areas and prepare for the further epidemic. To delve into
these two issues, we chose the two angles, which are stock markets
and rumors, because they will give us a view from a statistical
perspective and meet our research demand.

From the economic aspect, we mainly focus on the daily con-
firmed cases, daily deaths, and daily recovered cases in China and
the world. And how they influenced the SSE Composite Index,
which is a significant indicator of the overall situation of the Chi-
nese stock market, and the primary sector indices, giving people
an overview of different industries in China. Based on all the infor-
mation, we can have a comprehensive understanding of the overall
economic situation and development of various sectors. Regarding
specific methodslinear expression is used to judge the influence of
COVID-19 on the economy. At the same time, we need to study
whether the influence is different on distinct industries.

On the other hand, we are concerned about how important to
open information in the epidemic, especially in the area of ru-
mors. The rumor data is the original rumor and the clarifications
of rumors. The primary method we implement is to recognize the
rumor categories and visualize the keywords. To be more specific,
the latent Dirichlet allocation model is mainly used to understand
which aspects are more likely to generate rumor and determine the
direction of the clarifications of disinformation.

2 DESCRIPTION OF DATASET

There are mainly four datasets used in the research. The first one is
about the COVID-19 cases from JHU CSSE. It records the current
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confirmed, dead, and recovered instances in different regions in the
world. From this dataset, we can calculate the daily new cases in
the world and China. The second one and the third one is about the
Chinese stock market. The second one is about the SSE Composite
index, while the third one is about primary sector indices. The
SSE Composite Index, also known as SSE Index, is a stock market
index of all stocks traded at the Shanghai Stock Exchange. It is
one of the most important indicators of the Chinese stock market.
The primary sector indices give the stock index of the different
industries, including energy, materials, manufacturing, consump-
tion, medicine, finance, information, telecommunications, public
utilities, etc. From these datasets, We can have a general idea from
a macro and micro perspective. The fourth one is rumor-refuting
dataset. The source of the data is DXY, which is a critical channel
for Chinese people to obtain relevant epidemic information.

Since this paper is mainly related to the epidemic situation in
China, the time range of data we chose is from January 24 to May
15. In late January, reliable and clear data about the infection were
available, and in mid-May, the COVID-19 was under control in
China. On the whole, this period can represent the curve of epidemic
development in China.

3 STOCK MARKET

Under the influence of the epidemic, the macro-economy of all coun-
tries in the world has been hit, and GDP has declined[2], which also
has an impact on the stock market[7]. Therefore, it is necessary for
the state to formulate relevant policies for the stock market. Because
there are many attributes in the COVID-19 cases dataset, including
daily confirmed cases, recovered cases, dead cases, recovered ra-
tio(the ratio of everyday recovered cases to confirmed cases) in the
world and in China. And it is obvious that all of them are closely
tied. To select a high correlation and reduce the multicollinearity
of all independent variables, we chose MANOVA[1] and variance
inflation factor (VIF)[4] to select the suitable independent variables
for our model. After getting all the elements whose P-value is less
than 0.05, we also test the combination of factors to ensure that
the VIF value is less than 5. Finally, the independent variables we
chose are daily confirmed cases in the world, recovered instances
in China, and improved ratio in the world. The result of VIF can
be seen as Tablel. All of them are less than 5, and the combination
is relatively comprehensive of all the combination which meet the
demand.

Table 1: the VIF value of the combination of confirmed cases
in the world, recovered cases in the China, recovered ratio in
the world

Attribute VIF
confirmed cases in the world 1.986104
recovered cases in the China  3.114696
recovered ratio in the world  1.930471

After obtaining the combination of independent variables that
will influence the stock market, we try to figure out to what degree
it will affect the index and volume of the stock market. Therefore,
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we chose linear regression to evaluate them. The dependent vari-
able can be the index of the SSE composite index, the volume of
stocks trading on the Shanghai Stock Exchange and primary sectors
indices.

3.1 SSE composite index

The SSE composite index is a statistical index reflecting the gen-
eral trend of listed stocks in the Shanghai Stock Exchange. The
total market value, circulation market value, quantity proportion,
and transaction amount proportion of stocks in the Shanghai Stock
Exchange are quite considerable in the Chinese stock market. There-
fore, for this research, we mainly focus on two attributes in this
dataset, which are volume and index, to evaluate the impact of
COVID-19 on the Chinese stock market from a macro perspective.
The coefficient of linear regression about the SSE composite index
can be seen in Table 2, and the result about the volume of the SSE
composite index can be seen in Table 3.

Table 2: the coefficient of linear regression about index

Attribute Coefficient
confirmed cases in the world -0.19899411
recovered cases in the China  0.34849017
recovered ratio in the world  0.32447878

Table 3: the coeflicient of linear regression about volume

Attribute Coeflicient
confirmed cases in the world -0.27922668
recovered cases in the China  0.34849017
recovered ratio in the world  0.32447878

When building the model, we divide the data into two parts
according to the ratio of 9 to 1: training set and test set. The reason
why we split data like this is that there is not a long time before
the outbreak, so our data volume is relatively small. To validate our
model’s accuracy, Root Mean Square Error(RMSE)[3] is used. RMSE
is around 0.19 in the model of regarding index as the dependent
variable, so there is a forecast error. RMSE is 0.07 in the model re-
garding volume as the dependent variable. It shows that the overall
accuracy of the model is relatively high. We will also consider these
errors in the subsequent analysis.

According to the result above, even though there is a difference
between the result of index and volume, all three factors have a
particular impact on China’s stock market. Among them, Chinese
daily recovery cases and the world’s daily recovery ratio have a
positive effect on the stock market, while the world’s confirmed
cases hurt the stock market.

The reason why Chinese recovery cases will largely influence the
stock market is that the Chinese stock market is deeply affected by
the high proportion of individual investors. The massive recovery
of the infected population has given them confidence in the market,
raising the stock index and volume. It is believed that the domestic
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epidemic control has achieved remarkable results. Besides, in order
to support more enterprises to return to work and production, the
government has issued a series of supportive policies and imple-
mented them, such as providing tax relief and credit support for
enterprises, especially small and medium-sized enterprises. At the
same time, it offers more jobs for infrastructure construction and
promotes the development of infrastructure-related industries. At
the same time, due to the later stage of the epidemic, the world’s
epidemic center was transferred, and foreign commercial capital
returned. The influx of money further promotes the development
of related industries.

In the meanwhile, global situation of COVID-19 also has a mean-
ingful impact on China’s stock market. It is undeniable that China’s
economy is closely connected with the world in the context of
economic globalization. In the later stage of COVID-19, due to the
effect of the COVID-19, the economy has been dramatically im-
pacted in many regions of the world[8], and it in t will influence
China to some degree, which has close trade ties with them. The
close relationship between China and the global economy is also
why the global recovery ratio has a positive impact on China’s
stock market.

3.2 primary sectors indices

Then, we turn our attention to different areas of the stock mar-
ket. We still used the linear regression method to study various
industries in the world, only to change the data set from the SSE
Composite index to primary sector indices. The coefficient of linear
regression will help us to compare the impact of the epidemic on
different industries. The results of linear regression are shown in
the table 4 below.

Table 4: the coefficient of linear regression about primary
sectors indices

Global con- Recovered Global recov- section code

firmed cases cases in China  ered ratio

0.578599 0.152707 0.166588 sh.000032
-0.133817 0.371597 0.380406 sh.000033
0.11084 0.583916 0.202579 sh.000034
-0.390236 0.233471 0.381991 sh.000035
0.56165 0.127547 0.273332 sh.000036
0.39067 -0.110289 0.407933 sh.000037
-0.35649 0.04493 0.381908 sh.000038
0.004645 0.41213 0.485089 sh.000039
0.109616 0.81435 0.036243 sh.000040
-0.081437 0.397544 0.206555 sh.000041

According to the result above, the most negatively affected by
confirmed cases worldwide are sh.000035 and sh.000038. They repre-
sent the SSE Consumer Staples Sector index and SSE Financials Sec-
tor index, respectively. And there are also some indexes positively
correlated with confirmed cases worldwide, which are sh.000032
and sh.000036. They represent the SSE Energy Sector index and
SSE Consumer Discretionary Sector index. Although the SSE Con-
sumer Discretionary Sector index and SSE Consumer Staples Sector
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index look similar, they are indeed about different areas of con-
sumption. The former is the most basic and necessary consumer
goods in our daily life, including agricultural, animal husbandry,
fishery products, food, personal household products, etc. The lat-
ter is the consumption in addition to the necessary expenditure,
including cars, clothing, media, etc. Because of the aggravation of
the global epidemic situation and the stagnation of industries in
various countries, China’s production has also been affected. The
Chinese financial sector has also been affected due to repeated melt-
downs of the US stock market. At the same time, during the severe
period of the global epidemic, the epidemic situation in China has
been controlled. After long isolation, people’s desire for essential
consumption has rebounded. But given that the economy has been
struck by the epidemic, many people don’t choose luxury consump-
tion. In the meantime, China, as an energy importing country, has
benefited to some extent from the collapse of oil, which explained
why the energy-related index will increase when the worldwide
confirmed cases rise.

When the number of recovery cases in China increased, the most
positively affected were SSE Telecommunication Services Sector
index (sh.000040) and SSE Industrials Sector index (sh.000040). SSE
Health Care Sector index (sh.000037) was the only one that de-
creased with recovery increase. Wuhan is a crucial photovoltaic
base in China. Wuhan East Lake New Technology Development
Zone has gathered many optoelectronic enterprises and has formed
an industrial pattern led by the optoelectronic information industry.
The control of China’s disease shows that production can gradually
start to recover, especially the industrial recovery in Wuhan areas
has promoted the development of the telecommunications industry.
5G construction after the peak of COVID-19 is also one of the rea-
sons. Also, it is clear that as the overall epidemic’s impact on China
has diminished, the medical-related index has fallen somewhat.

The impact of the recovery ratio of the global epidemic on vari-
ous industries is also positive, especially for the SSE Information
Technology Sector index (sh.000039) and SSE Health Care Sector
index (sh.000037). That is because, in the middle and late stages
of the epidemic, people chose to study and work at home, and the
related information technology industry developed. At the same
time, people had the need to go out to work with the awareness of
self-protection in the epidemic, so the demand for PPE increased,
which promoted the development of healthcare-related fields in
China. Also, the need for vaccine development may be another
reason.

4 RUMOR

For the rumor dataset, what we need to care about are doing Chi-
nese word segmentation and computing TF-IDF[6] term frequency-
inverse document frequency). Different from English, there is no
word boundary in Chinese sentences, so when processing Chinese
natural language, it is usually necessary to segment words first. In
this article, we choose the Jieba module to do this task. TF-IDF is a
statistical method to evaluate the importance of a single word in a
document set or corpus. The value of TF-IDF will increase with the
number of words appearing in the document and decrease with the
number of words appearing in the corpus. We drew a word cloud
plot based on the TF-IDF value below. And we set the number of
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words in the clouds are one hundred. The word cloud can be seen

as Figurel.
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Figure 1: Word Cloud of rumors

From the image above, the larger font of the word is, the higher
the weight of its corresponding TF-IDF value is. In this case, we
can see that the rumor is mainly about how to reduce the spread of
the virus to prevent infection. For example, in the word cloud plot,
we can see the word Mask, which shows that due to the shortage
of masks, how to use masks correctly to prolong the life of them
has become a topic of concern. Also, we can see that heat, alcohol,
hairdryer are also in the same category. People are concerned about
whether heating and alcohol can effectively eradicate viruses. In
addition, there are coat and fur collar. People are worried about how
long the virus will last in different clothes. The rumor disseminator
just uses people’s psychology of being afraid of viruses to spread
the related disinformation to cause panic or dump goods.

On the other hand, people are also very concerned about the
living condition and medical conditions in Wuhan. Because the
lockdown is really strict in Wuhan, information flow may not be
timely. Then it is more likely to lead to the spread of rumors, so the
relative proportion of fake news in Wuhan is very high. In this case,
the government must organize not only relevant medical experts
to refute rumors in time and guide people to prevent epidemic
scientifically but also use various media to show people’s life in
Wauhan to rest assured the whole nation.

To better understand the keywords, we can apply LDA [10]. LDA
can also be regarded as a Bayesian probability model with three
levels of structure, including words, topics, and documents. We
choose the attribute named body as text source because it contains
not only the rumors and why it is wrong. For the LDA model, it is
essential for us to pick a value k to determine how many topics we
could get. To get the value k, we should compute perplexity based
on different k to choose the optimal one. The graph of perplexity
value based on different k can be seen as the Figure 2 below.

According to the image, it shows the value of perplexity from
k=1 to k=50. Perplexity is a measurement method of information
theory. It is the evaluation of the LDA model and the judgment
of improved parameters. To determine the optimal k of our LDA
topics, we have to select the value of k at the elbow of the line.
Looking at the trend in the image, we could choose a value of k
from 5 to 10. And since the amount of data is not large, if we want a
larger k, the topics we finally got may not be representative. So that
we ultimately choose 5 as the k value. After training our models
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Figure 2: The value of perplexity based on different k-value

and translating the keywords in the different topics into English,
our result can be seen in Table 4 below. And for each cluster, we
show five most representative keywords to describe a specific topic.
The result can be seen in Table 5.

Table 5: the coefficient of linear regression about primary
sectors indices

Topic keywords corresponding probability

Num-

ber

1 mask, country, over, im- 0.149, 0.045, 0.023, 0.021,
munization, medical 0.013

2 health, Center, Dog, Dis- 0.046, 0.031, 0.024, 0.023,
ease Control, Diagnosis 0.021

3 Wuhan, medical, epidemic, 0.061, 0.051, 0.045, 0.036,
symptoms, pneumonia 0.035

4 effect report rumors isola- 0.087, 0.073, 0.046, 0.031,
tion heat 0.020

5 respiratory, respiratory 0.080, 0.038, 0.034, 0.034,
tract, droplets, spread, 0.031
coronavirus

According to the table above, there are five topics and their cor-
responding keywords and probability. For the first topic, we could
see that the keyword mask has a much higher value than other
words. It said that the usage and effect of the mask, and how to
identify the most effective mask are what people really care about,
just like word cloud plot shows. Under this circumstance, especially
in the early stage of China’s epidemic, the production capacity o
has not been improved, and medical masks and N95 masks are in
short supply. So people will think of various ways to extend the
validity of masks. To meet the needs of people, multiple rumors
about prolonging the life of masks came into being. This is what
the government needs to pay attention to. It is of considerable sig-
nificance to guide people on how to choose and use masks correctly
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for the prevention and control of the epidemic and to avoid greater
social panic.

For the second topic, as the keywords described, it mainly fo-
cuses on the health care system and pets. As for the healthcare
system, it is not the source of rumors, but the subject of refutation.
After reading the original file of the rumors, we realized the theme
of the groundless information is professionals from hospitals or
health systems. As experts in the field of infectious diseases, their
statements are more persuasive and credible than those of ordi-
nary media or politicians and can achieve the effect of refuting
rumors. For pets, people are concerned about whether diseases
can spread between people and pets. Because the related research
is not complete, especially in the early stage of the epidemic, the
medical resources were limited, and the associated research was
limited. Until now, since there is not enough evidence to show
whether all the pets can infect people. What people need to do is to
care about pets who have been exposed to the patients for isolation
observation and related environmental disinfection, rather than
spreading rumors to abandon pets.

The third topic, it mainly about the symptoms and the situation
in Wuhan. It is quite obvious why these two topics are concerned.
People are worried about what kind of symptoms can be detected in
the hospital and the research of asymptomatic patients. One aspect
of the rumor is how infectious asymptomatic patients are. At the
same time, as the most severe epidemic area in China, whether local
residents or other places are very concerned about the situation of
the epidemic and related news in Wuhan. Therefore, people who
have an abnormal mind are more likely to spread rumors in this
area.

The fourth topic is mainly about virus information and virus
treatment. Because there is a lot of data about rumors, We also
need some professional medical knowledge to refute the rumors.
In other words, people are also concerned about the methods of
treatment and prevention. Because the virus is scary, some lawless
people in order to dump drugs or health care products, spread the
rumors that related drugs are useful for the prevention or cure of
COVID-19. However, up to now, no specific drug has been proven
effective for the prevention of this disease. The government and
relevant medical institutions should increase the publicity on this
aspect and crack down on the rumor mongers so that the general
public can not go crazy to buy drugs, or even take some harmful
drugs.

The fifth topic is mainly about the way of virus transmission
because the virus is primarily transmitted through droplets rather
than simply left in the air, which is a piece of strong refutation
evidence for many ways of virus error prevention. That’s why it
appears many times.

5 CONCLUSION

To sum up, in the above analysis, we mainly analyze the influ-
ence of the COVID-19 epidemic on the Chinese economy and open
governmental information. In the process of spreading, we should
recognize what the most rumors are about and find out the key-
words and angles. On the one hand, we can realize what we care
about most in the epidemic. On the other hand, it is also for the gov-
ernment and medical professionals to publicize and refute rumors
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and find the right direction. to prevent social panic and protect
people’s safety. From an economic point of view, we choose the SSE
Composite Index and primary sector indexes to study the whole
market and different fields. We hope to see how the global epidemic
and Chinese epidemic affect Chinese economy, respectively, and the
extent of their influence and the reasons behind their differences.
That’s why we used linear regression and the LDA model. In this
part, we will classify and summarize all the analysis results.

From the perspective of transmission, according to the above
analysis, because the epidemic is highly contagious and relatively
low mortality, people are most worried about the transfer of the
virus. In order to slow down the spread of the virus, we should
control the source of infection, cut off the route of transmission, and
protect the susceptible population. Since all people are susceptible to
infection, the focus is mainly on the source and way of transmission.
We can get the following conclusions through word map and LDA
topic analysis.

From the perspective of infectious sources, we are concerned
about what individuals can become contagious sources. We have
known in the early days that the virus can spread from person to
person. So whether pets, especially mammal pets, such as cats and
dogs, can also spread the virus is a topic of concern. So there are a
lot of rumors that pets can carry a lot of viruses. But at present,
there is not enough evidence that pets can infect the virus. The
government should guide people to disinfect pets and their living
environment and avoid them listening to rumors and discard them
at will.

In terms of the transmission way of the virus, we need to consider
in which transmission way the virus will survive for a longer time
and in which environment it can be killed entirely. Because people
live in fear of the virus. For example, they are curious about how
long the virus can survive in the air and how long it can survive
in different clothing materials. Some rumors exaggerate the time
virus can stay, which aggravates people’s panic. On the other hand,
we attach great importance to how to isolate the transmission
channels. For example, masks are a common tool used in epidemic
situations. How to use masks correctly and how to prolong the
life of masks are what people are concerned about. At the same
time, high temperature is also one of the ways people thought is
efficient. However, because high-temperature antivirus has a high
requirement, it is impossible to achieve this effect by using a hair
dryer for a short time, which is said useful in many rumors.

In addition to the virus itself, there are many rumors about
Wuhan. On the one hand, Wuhan is the place with the most severe
epidemic in China. Besides, due to strict measures to close the city,
people in other provinces and cities are more curious about the
situation in this area, which also aggravates the spread of rumors.
The virus comes from the laboratory, or the first patient has been
found, but these are not scientifically verified and supported. Then
we are supposed to talk about what role the government should
play. After identifying specific rumors, we can formulate relevant
measures based on these rumors. The measures mainly come from
two aspects: one is propaganda and denying the rumors, the other
is to solve people’s actual needs. We can see many rumors about
how to disinfect and use masks in the above analysis. At this time,
the government needs to invite professional medical experts to
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help people to better understand the virus and how to do self-
protection on various platforms to help people better use PPE. The
authoritative statement can also relieve people’s anxiety to some
extent. At the same time, during the period of Wuhan’s lockdown,
it is also necessary to strengthen the reporting of the situation
in Wuhan so that people who worried about Wuhan can quickly
learn the news rather than believing in rumors. At the same time,
if the people in Wuhan can share their lives on social media, it will
be more conducive to resist rumors, and also make it easier for
people in other places to help. At the same time, we can see that
the demand for masks shows that the masks’ production capacity
was insufficient at that time, so we need to increase the production
capacity of masks and make a can afford PPE. Rumors about pets
and their origins suggest that more research about the epidemic
should be done, and the government should introduce the result of
research on social media.

From an economic point of view, the core is to determine the
impact of the global epidemic and China’s epidemic on Chinese
stock markets. From China’s perspective, because the epidemic will
have a substantial impact on the overall economy in the short term.
In this crucial period, the macro-control policy of the government
over the economy is fundamental to the rough the support of en-
terprises in crisis and unemployed people, as well as strengthening
the activity of the market to avoid a more significant economic
turmoil or even social crisis. The government can learn from the
previous experience in dealing with SARS and HIN1 to understand
the financial measures during the epidemic period suitable for the
country.

From the perspective of the whole world, all industries of vari-
ous countries are closely linked because of economic globalization.
When they benefit from globalization, they inevitably need to bear
the huge risks in the global financial crisis. Therefore, how to bal-
ance the national economic security with the issues that need to be
considered by all countries in the opening-up mode. At the same
time, we also need to pay attention to the impact of the epidemic
on the global economic system. We cannot deny the impact of
the COVID-19 on the economy. As the global value chain has ex-
posed defects and vulnerabilities in the epidemic, countries may
increase their intervention in industrial layout. Whether we should
be alert to the trend of globalization is also a consideration for
policy-making. From the two aspects of the stock market and false
information, we can summarize the measures that the government
should take in the epidemic as follows:

1. Actively understand people’s needs and panic.

2. Set up more production lines to improve the production effi-
ciency of products people need, meet people’s needs and control
the price of products.

3. The government should promptly publish the epidemic situa-
tion on multiple platforms, including medical data, the movement
track of the confirmed personnel, etc.

4. We should organize and arrange authoritative experts in rele-
vant fields to explain the medical knowledge related to the epidemic
situation to help you protect scientifically.

5. For the blocked areas or areas with particularly serious epi-
demic situations, we should increase the reports on the disease and
people’s daily lives so that people throughout the country can rest
assured, and it will reduce the spread of rumors.
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6. The government should consider the impact of the epidemic
on the economy and adopt relevant macro-control policies, such as
supporting small and medium-sized enterprises, increasing infras-
tructure to solve employment problems, and other measures.

7. The government should pay attention to the protection of
economic security during the epidemic because the global epidemic
hit the industries of various countries and caused financial tur-
bulence. So we need to make policies to guarantee the national
financial security and solve the global crisis like foreign exchange
management.

In general, since all observations and conjectures are based on
short-term analysis, more data accumulation is needed for longer-
term analysis. At the same time, if we can make a horizontal compar-
ison with the data of other countries or other epidemic periods, we
will have a deeper understanding of the trend of the stock market.
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ABSTRACT

Forecasting influenza like illnesses (ILI) has rapidly progressed in
recent years from an art to a science with a plethora of data-driven
methods. While these methods have achieved qualified success,
their applicability is limited due to their inability to incorporate
expert feedback and guidance systematically into the forecasting
framework. We propose a new approach leveraging the Seldonian
optimization framework from Al safety and demonstrate how it can
be adapted to epidemic forecasting. We study a specific of guidance-
smoothness, and show that by its successful incorporation, we are
able to not only bound the probability of undesirable behavior to
happen, but also to reduce RMSE on test data by up to 17%.
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1 INTRODUCTION

Epidemic outbreaks incur heavy burden in terms of both health and
economic costs (like the ongoing 2019-Covid corona virus epidemic).
According to the world health organization (WHO), more than 15
thousand lives were lost due to the Ebola outbreak in West Africa
between 2013 and 2016". The economic cost of Ebola is estimated
to be more than 53 billion dollars? Timely forecasting of epidemic
outbreaks is critical. Accurately forecasting various metrics of an
epidemic outbreak informs practitioners and policymakers about
impending scenarios and helps them devise strategic countermea-
sures, such as quarantining subpopulations, increasing vaccination
availability, and school closures.

In this paper, we focus on influenza forecasting, motivated by
the CDC FluSight prediction challenge [2] which seeks to predict
the incidence of Influenza-like-Illnesses (ILI) in the US. Influenza
is a major disease in the United States and beyond, causing thou-
sands of fatalities every year. ILI is a symptomatic definition of
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(a) Error (b) Guidance
Figure 1: Comparison of approaches in terms of (a) error in
forecasting and (b) a guidance metric. In both plots lower
is better. The red line in (b) is the threshold determined
by guidance. T1 to T14 is the performance of teams partici-
pating in the 2015 FluSight challenge. Our method Guided-
Epideep (G-Epideep in the plot) is the only method which
satisfies the guidance and gives the lowest prediction per-
formance error.

illnesses that serves as a bellwether for real influenza incidence in
a population. There has been a surge in recent research interest in
influenza forecasting giving rise to a variety of mechanistic [23, 33]
and statistical approaches [1, 5]. Mechanistic approaches predict
influenza burden using simulation and aggregation of large epi-
demiological models. These models require a lot of calibration and
hence are limited by their parameters to generalize well and fit the
data [19]. Hence many researchers have begun exploring statistical
approaches for this task, which train on historical ILI data and use
the trained model to make forecasts for the current season.

Influenza seasons tend to be highly dynamic and have high
variability due to numerous factors (e.g., weather, human mobil-
ity, virus strains circulating amongst the population) affecting the
overall characteristics of the season. Moreover, different seasons
and regions have different dominating influenza virus types. Fur-
ther, the surveillance data collected (using ILINet) is a composite of
multiple sources, is non-uniform, and is biased in many domain-
specific ways. Hence while statistical approaches can frequently
perform more accurate predictions than mechanistic models, they
often show undesirable, unexplainable, or otherwise unexpected
behavior.

For example, consider influenza incidence during the annual
holiday season in the US. During this period, patients typically
self-select and refrain from going to health providers, unless the
situation is serious. This causes a temporary drop in recorded ILI
incidence. However, as human mobility is high, flu activity rapidly

..
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increases in the following weeks. This can not be modeled using
standard mechanistic epidemiological models [20]. At the same
time, statistical approaches ‘over-correct’ and exaggerate the tem-
porary ‘dip’. Hence if we can ensure that the forecasting model’s
predictions are reasonably *smooth’, such a behavior can be avoided.
This ’smoothness’ of the forecasts is well-motivated from other epi-
demiological considerations as well. As Figure 1 (b) shows, almost
all the methods used in the 2015 CDC FluSight challenge show this
"lack of smoothness’ behavior (lower is better).

To tackle such issues, in this paper, we propose incorporating
expert guidance into statistical models for epidemic forecasting. In
the case above, may be the expert can give the guidance that week-
to-week forecast should be smooth, which can alleviate the over-
correction problem. Indeed, incorporating this guidance helps our
approach outperform the baselines while maintaining accuracy. Our
approach 'Guided EpiDeep’ is the only method to show desirable
behavior (having guidance metric Zg,,, 0, below the predefined
threshold (red line)) while also getting the lowest errors (Figure 1).

To design a forecasting framework as envisioned here, there
are several challenges. The first challenge is (a) how to design a
general framework for any influenza statistical forecasting model
to ingest and leverage expert guidance. Designing a general frame-
work to incorporate guidance allows existing approaches to include
expert guidance. The second challenge is (b) how to ensure that
the framework is easy to use and generates useful feedback to the
user. Moreover, the framework should communicate the extent to
which the guidance was successfully incorporated and whether the
guidance is helpful or not. Such a framework will aid in selecting
guidance and make the forecast interpretable with respect to the
guidance provided. None of the existing approaches is able to tackle
these challenges.

In this paper, we leverage the Seldonian Optimization framework
proposed in Al safety to enforce expert guidance (desired behavior)
and prevent undesirable behavior. Our framework provides feed-
back to the user regarding the success or failure in the incorporating
the expert insights. In case the framework fails to incorporate the
insight, it communicates the failure to the user, who in turn can
take steps to alter/improve the insight or change data or modify
model hyper-parameters. Our contributions are as follows.

¢ Novel method for incorporating expert guidance: We
explore a novel problem & adapt a successful framework
to obtain domain-based consistency (and guidance), and
perform extensive experiments to show properties of the
framework.

o Flexible user interaction framework: The framework
adapts to the user’s requirements.

e Real data case-study: We present concrete case studies
showing examples of expert guidance motivated by epidemi-
ologist observation, and how our method helps to achieve
experts requirements.

The rest of the paper is organized in the following way: we
first motivate our problem, and formulate it. Then we present our
method, and then empirical studies on real CDC data. We finally
end with related work and conclusions.
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2 PROBLEM FORMULATION

In this section, we introduce the novel problem of aiding statistical
epidemic forecasting models with an expert’s guidance. Before, we
formalize our problem, we present the problem setting.

2.1 Epidemic Forecasting

Motivated by the setup of the CDC FluSight challenge, we study the
epidemic forecasting problem from a temporal seasonality stand-
point, such as in influenza. For this problem, we are given data
D in the form of time series (e.g. the wILI burden per week for
every season) and a predictive task 75y, which sets what the target
is and the time w (usually a week) when this prediction is to be
made. Examples of targets are immediate-future incidences, peak
intensity for season i, and the time when the peak value occurs.

The annual FluSight Challenge hosted by CDC asks to forecast
metrics related to the current influenza season for the national and
regional levels [2, 3]. The CDC releases influenza surveillance data,
referred to as weighted Influenza-like Illness (wILI), each week for
every region. Given the latest partially observed influenza season,
often represented as a time-series, the challenge asks to perform
four different types of prediction tasks 75,. They involve forecasting
the incidence (WILI) value for the next four weeks, the onset of the
season, the peak incidence value, and the time when the peak occurs.
wlILI incidence curves for each season since 1997/98 are publicly
available?.

2.2 Expert guidance

Expert guidance for epidemic forecasting is about leveraging multi-
ple forms of domain knowledge and other preferences. An expert
may want to guide a statistical model based on many considera-
tions. Such considerations may include the epidemiology of the
disease, characteristics of active virus strains (e.g. transmissability,
reproduction rate), activity intensity in other other latitudes that
dealt with the same virus strain, or efficacy of the vaccines to active
strains of virus. It can also include some auxiliary knowledge. For
example, it is well known that the Christmas holiday season in the
US has specific impact on the flu spread which can not be captured
by regular mechanistic epidemiological models [20]. It can include
other public health policy considerations too, to ensure desirable
behaviors like fairness in resource allocations.

As mentioned earlier, during the holiday season recorded epi-
demic activity temporarily drops due to patients’ tendency to not
seek healthcare. However, an expert notices that predictions of
current statistical models are not ’smooth’ i.e. they change a lot
week-week and ’over-correct’ during this time (a fact we demon-
strate later in our experiments using the predictions of all the teams
which participated in the CDC FluSight 2015 challenge). Hence s/he
may want to more accurately forecast influenza incidence during
the Holiday season incorporating the ‘smoothness’ property.

2.3 Desired Properties of Guidance

In this paper, we focus on incorporating such types of guidance
into statistical epidemic forecasting models. Designing a framework
which can incorporate guidance must be able to exhibit some ideal

Shttps://gis.cde.gov/grasp/fluview/fluportaldashboard html
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properties, especially as it is meant for experts who may not know
the internals or any technical details of the statistical models.

e P1. Promote one or more desirable behaviors during training.

e P2. Have a mechanism to guarantee tolerance on deploy-
ment.

o P3. Be flexible to any generic ad-hoc guidance and be com-
patible with state of the art epidemic forecasting models.

o P4. Be easy to use for the user/expert.

e P5. Provide feedback to user if guidance could not be incor-
porated.

Let us discuss the underlying reasons behind the importance of
each of the properties described above. P1 is an important facet of
guidance: when training, the preference should be given to can-
didate models aligned with guidance goals. In addition, an ideal
framework should be able to enforce more that one desirable behav-
ior. Once the training completed, one can not expect that guidance
will be met in unseen data at all times. Hence, it is natural to think
about a probability of the trained model in meeting the guidance
in unseen data. P2 sets guarantees on the expected probability of
a model to exhibit the desirable behavior on unseen (test) data.
P3 takes into consideration that experts’ requirements may be re-
lated to any characteristic of the epidemic season. Furthermore,
to leverage existing statistical forecasting models, the framework
should provide a path to easily incorporate them. P4 aims to pro-
vide the user an easy interface to leverage the framework, treating
the statistical model essentially as a black box. Finally, P5 impor-
tantly aspires to clearly communicate the result of attempting to
incorporate the proposed guidance. Note that in our context, expert
guidance can be motivated by practical considerations, and the data
is really a composite signal (ILI cases rather than exactly flu cases).
Hence sometimes expert guidance can indeed not be borne out by
data, or be ’completely wrong’ (unlike theory-guided data science
[16], where scientific knowledge is considered ground truth) - so
our framework needs a principled mechanism to signal this fact
and provide feedback. The feedback provided opens possibilities
to fruitful interactions as the expert may explore with different
behaviors and tolerances to find the most suitable, and even test
"what-if” scenarios.

2.4 Definitions

Taking these properties in consideration, we make the following
definitions to then state our problem.

Definition 2.1. Expert guidance: We represent expert guidance as
a tuple (g, §), where g : © — R is a function that maps a candidate
forecasting model 6 € © to a measure of desirable or undesirable
behavior of 6, and § € [0, 1] is a tolerance which constraints the
probability of the model to exhibit this behavior.

Definition 2.2. Successful incorporation of guidance: We success-
fully incorporate guidance when we obtain a forecasting model 0
for which our desired tolerance is met.

Note that our definition of expert guidance allows any framework
which adopts it to exhibit all five desirable properties. Since the
function g encodes one or more desirable behavior quantitatively,
it can be used to enforce the behavior, satisfying P1. The parameter
§ is the tolerance of undesirable behavior as mentioned in P2. Our
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definition of guidance is general enough to incorporate wide range
of user insights to meet property P3. The only requirement is that
the deviation from the desired behavior needs to be captured by
the function g. Similarly, the user/expert do not need to be aware
of underlying optimization framework and statistical model to
incorporate the guidance as the function g is independent of both,
satisfying P4. Similarly, if the value of the function g is greater than
the threshold §, the framework can communicate with the user
regarding its inability to meet the guidance. We show how we can
adapt our examples given before using our framework later (in
Section 3.4).

2.5 Problem Statement

Having defined the notion of guidance that meets all the desired
properties, we can state our problem as follows:

GuIDED EPIDEMIC FORECASTING: Given a forecasting model which
defines hypothesis space ©, data D, a predictive task Ty, and expert
guidance (g(0), 5), we are required to return an optimal model 0,
if found, that successfully incorporates expert guidance or return
feedback that such 0 could not be found.

In this paper, the predictive task we consider is the future in-
cidence forecasting. Our task 7,, asks for influenza incidence at
week w + 1 given that the incidence till week w is observed. And
as the problem states, our goal is to enforce expert guidance, while
solving for the predictive task. However our framework can easily
handle other predictive tasks as well (like peak prediction etc).

3 OUR METHOD

As stated above, the GUIDED EPIDEMIC FORECASTING problem re-
quires a base forecasting model upon which the guidance is en-
forced. To enforce the guidance, we need a framework which opti-
mizes for performance with respect to the predictive task 75, as well
as ensures that the constraint imposed by the guidance (g(0), ) is
met. Here we leverage Seldonian Optimization which does this.

3.1 Seldonian Optimization

The Seldonian optimization framework [26] was recently proposed
for Artificial Intelligence (AI) safety. It is designed to prevent Al
models from showing undesirable behavior such as gender or racial
bias. Traditional AI algorithms optimize an objective function to
select a model 8 as a solution from the space of all possible models
©. This framework precludes undesirable behavior of Al model
by enforcing behavioral constraints on the optimization objective.
Hence, a probabilistic constraint is added to the optimization such
that the probability that the value of a predefined undesirable be-
havior metric g(0) is greater than 0. After training, to ensure the
behavioral constraint will be met when the solution is deployed,
this framework has a safety test mechanism, which is performed
in unseen data. If the model meets the requirements of the safety
test, the trained model is returned, else the framework returns no
solution found (NSF).

A natural question that arises is what kind of base forecasting
model (which is required by our problem) best works with the Seldo-
nian optimization framework. Intuitively, models which learn/train
by back-propagating errors are most suited for the Seldonian Frame-
work as it learns through back-propagating as well. Hence, here we
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chose a recently proposed deep learning based influenza forecasting
model EpiDeep [1] as the base model upon which the guidance is
to be enforced. We desribe Epideep briefly next. However, we wish
to emphasize that our framework is general.

3.2 EpiDeep

Epideep [1] is a recent deep neural architecture designed specifically
for influenza forecasting. It exploits seasonal similarity between
the current season and historical seasons via deep clustering [31].
The clustering module learns a latent low dimensional embedding
of the seasons, such that the similarity between the seasons in
the embedding space is meaningful for the task at hand. The clus-
tering module in EpiDeep is designed such that it is possible to
learn the embedding of the partially observed current season in
the space of fully observed historical seasons. Epideep also uses
long short-term memory (LSTM) [10] to encode in-season patterns
of the current season. It then combines the embeddings from the
clustering module and the LSTM and feeds the aggregated embed-
ding to the decoder module, which make predictions for task 75,.
For the set of seasons S where each season S € § is represented
as a time series S = s1, S2, . . ., st in the training season, to predict
the incidence observed in week w EpiDeep is trained with a loss
function L(6) = Y.ses |7 — swl|| + f, where 6 € © is the trained
model,j is the prediction made by 6 and s, is the observed inci-
dence and f is the internal loss for Epideep not directly related to
the task T,,. Note that while training only the weeks prior to week
w is leveraged.

3.3 Expert-guided EpiDeep

The next natural question is how to adapt the Seldonian optimiza-
tion framework to train EpiDeep with expert guidance. Before we
answer that, let us define some notations. Let us have several dif-
ferent expert guidance to incorporate {(g;, d;)}1,. We adopt the
convention that if g; () < € for some small 0 < ¢, the forecasting
model 6 does not exhibit undesirable behavior. Hence we impose
probabilistic constraint on g; (), on the model optimization. Hence,
our updated optimization objective is as follows.

argmin 315 = swll + 5
SeS8
s.t.Pr(gi(6) <e)>1-6,Vie{l,...,n} (1)

Here, § is the prediction made by model 6 for the prediction
task 7yy. The objective above indicates that we want to ensure the
probability that the desirable behavior (i.e, g;(8) < €) occurs is
greater than 1 — §; for some small 0 < § < 1, while the difference
between predicted incidence value and the eventually observed
value is minimized. Note that, we also want to ensure that the prob-
ability that the desirable behavior holds even in test/deployment
stage.

Following [26], we ensure that our approach optimizes the objec-
tive while not violating the constraints and it generalizes to other
unseen data with high confidence. It does so by dividing the given
training data 9 into two partitions D, and Ds. D, partition is used
for the model selection/optimization, while Dy partition is only
used to verify that the guidance behavior is met in unobserved
data. If the guidance behavior is not met in Dy, then the framework
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ensures that no model is returned. In Algorithm 1, we leverage the
Seldonian framework to design our algorithm Guided EpiDeep as
follows.

Algorithm 1 Guided EpiDeep

: Input: D, (g,6),Uy.
: Partition D into D, (for candidate selection) and D (for safety test)
: 0. € argmingee CandidateLossFunction(De, 8, €, Uy, |Ds|)
: { Safety test using Dy }
. if UpperBound( 6., Ds, 8, Uy) < € then
return 6.
else
return No Solution Found (NSF)
: end if

Nl R A SA N R R

Here, the function UpperBound in line 5 measures if the behavior
of candidate model 8. is desirable as per the guidance provided.
Based on predictions made by 6, variable Z is defined to quantify
the deviation from the desirable behavior for each prediction made.
We discuss how variable Z is constructed for the guidance we
consider in Section 3.4. Once Z is defined, we assume it follows a
normal distribution and compute UpperBound as suggested in [26].
We employ an empirical upper bound on the magnitude of £, which
is denoted as U. This bound is necessary to prevent gradient
explosion when switching losses in our CandidateLossFunction.
Next we present the CandidateLossFunction subroutine in line 3 of
Algorithm 2.

In the CandidateLossFunction subroutine, we use the D, parti-
tion of the training data to train on both the objective with respect
to the task 7, and to ensure that the returned model, 0 is consistent
with the guidance. To do so, variable Z = {Z;|Vi € D.} is created
using the predictions made by the model 8. Then the upper bound
on variable Z is computed as in [26]. If the upper bound computed is
less than ¢, indicating that the model is showing desirable behavior
with respect to the guidance, then loss on £(8) is returned else,
the loss on the bound is returned. Note that internally, A € Rs—g
balances the trade-off between loss and guidance.

Algorithm 2 CandidateLossFunction

1: Input: Candidate 6., D, {(g,8), Uy, |Ds|

2: Create an array of Z;, where i € D,

3: U = PredictedBound(Z;, 8, |Ds )

4 if U < ¢; then

5. return T |19 = swll + B+ Ak T2 1Zi]
6: end if

7: return Uy + U+ ((A-1)e

Now, the question is how to define the variables Z for a given
guidance. We discuss it next.

3.4 Constructing Behavioral Constraints

In this paper, we select smoothness as our expert guidance for
seasonal influenza forecasting. In this section, we show the con-
struction of constraint objectives for these expert guidance in the
form of the Z variables.
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3.4.1 Smoothness. Mechanistic epidemiological models reveal that
the epidemiological curves tend to be smooth with a single peak [24].
Hence, we expect epidemic influenza seasons to be generally smooth.
In fact, we observe influenza incidence curve to be smooth with the
consecutive values not changing drastically. Usually, incidence are
low in the beginning of the season, they gradually rise till the peak
is observed and then decline near monotonically. Hence, forecast-
ing that the influenza incidence while ensuring that the predictions
are smooth is a desirable property.

The smoothness also helps in correcting the drop observed in
the influenza activity during the holiday season (discusses ear-
lier), which arises due to the artifact of data collection. The exist-
ing approaches tend to overcompensate for the drop. Enforcing
smoothness in forecasts prevents such undesirable behavior. Here
we describe smoothness as follows:

Definition 3.1. Smoothness is the max allowed difference € be-
tween the predicted value and its predecessor.

We have a smoothness parameter €, which is the maximum
change allowed between current influenza incidence and the next
incidence. In simple words, we want to ensure that the probability
of smoothness function being greater than e.

9(0) =E([grs1 - Yil) < € @

Here, E(|§s+1 — Y¢|) is the expected absolute difference between
the predicted incidence ;41 by the model 6 and the last observed
incidence Y;. The guidance function g(0) quantifies the smoothness
by computing the difference between predicted and the previously
observed value. The equation above, highlights that the expected
difference between the forecasted value and the previously observed
value should be less than some constant € ensuring that the forecast
maintains week-to-week smoothness. Following this, we define the
varaible Z for smoothness as follows:

Zsmooth = |gt+1 =Y (3

3.5 Expert Interaction

As mentioned in Section 2, two of the desirable properties of a
framework to incorporate guidance is that it should be easy to
use (P4) and should be able to provide feedback to user (P5). In
this section, we present how our framework can be leveraged for
exploration as well as demonstrate how an user might be able to
interact with the framework.

From a user perspective, our framework provides three knobs:
data, model, tolerance. An user is able to decide on how to partition
the data into D for candidate model selection and Dj for safety
test. Similarly, the user can decide on the base model suitable for
the task at hand. The final knob corresponds to the tolerance with
which the failure to incorporate the provided guidance is allowed.
An expert/user can interact with the system by varying the values
corresponding to the knobs.

Since our model has a mechanism for the safety test, it may return
’No Solution Found’ (NSF) indicating that the guidance provided
could not be met given the values of the knobs. If the model returns
NSF, it is an indication for the user to either consider the guidance
provided or to vary the knobs. For example, if guidance related to
smoothness is decided to be changed, this can be changed from
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Figure 2: Flow diagram of expert interaction with Guided
EpiDeep. Expert is given two modes: direct guidance and au-
tomatic guidance. The choice depends on the underlying mo-
tivation of the expert. Depending on the mode selected, the
feedback is adapted to report success or failure.

€ = 0.5 to € = 1. If tolerance is changed, confidence in guidance
is changed. Hence, the model might be able to incorporate the
guidance with a lower confidence on its generalizability. On the
other hand, an expert can also change data by deciding to exclude
some historical seasons that are preventing the guidance provided
from being.

For ease of usage and interaction, our framework provides two
modes of usages, namely Direct guidance and Automatic guidance,
and depicted in Figure 2. We discuss each of the usages next.

3.5.1 Direct Guidance. In this mode, the user specifies guidance
along with all the all parameters. Then our framework tries to
incorporate the guidance within the constraints imposed by the
parameters. If the framework fails to find a forecasting model which
guarantees guidance incorporation, the the framework returns NSF.
The direct guidance framework is presented in Algorithm 1.

3.5.2  Automatic Guidance. The user or epidemiological expert may
not have data science/mathematical background to estimate the
parameters with which the guidance can be incorporated and is
willing to explore. Hence, in such cases, the framework tries to
find the parameters which ensures that the guidance is met and the
performance is maintained.

Our framework is able to provide such a exploration mode for
users. Here the user may specify a subset of the parameters, and re-
quirements in terms of performance. Our framework then explores
the parameter space to find such a model. If none of the parameters
explored is able to induce a model which satisfies the user require-
ments, the the framework returns NSF, indicating tha the guidance
could not be incorporated. In this paper, as an example of automatic
guidance, we ask our framework to explore the parameter ¢; such
that no compromise is made in terms of RMSE.

4 EXPERIMENTS
4.1 Setup

We describe the experimental setup next. All experiments are con-
ducted using a 4 Xeon E7-4850 CPU with 512GB of 1066 Mhz main
memory. Our method is very fast, training for one prediction task
(on 1 week) in about 3 mins. We will release the code for academic
purposes.



epiDAMIK 2020, Aug 24, 2020, San Diego, CA

Data Here we use the weighted Influenza-like Illness (wILI) data
released and updated by the CDC. CDC collects the wILI data
through the Outpatient Influenza-like Illness Surveillance Network
(ILINet) which consists of more than 3,500 outpatient healthcare
providers all over the United States.CDC defines Influenza-like
Illness (ILI) as “fever (temperature of 100-F [37.8-C] or greater)
and a cough and/or a sore throat without a known cause other
than influenza. Weekly wILI incidence curves for each season since
1997/98 are publicly available?.

Research questions to address. In our experiments we want to
compare the performance of our approach GuIDED-EPIDEEP with
the baselines for smoothness. We also want to evaluate the au-
tomatic guidance mode of GUIDED-EPIDEEP. Specifically, we are
interested in answering the following questions.

Q1. Is GuipED-EPIDEEP successful in incorporating guidance?

Q2. Does GuiDED-EPIDEEP give feedback?

Q3. Is GuipED-EPIDEEP successful in realistic scenarios on real
WILI data?

Evaluation. Here, we use the test data T, which is separated out
during training to evaluate the performance of GUIDED-EPIDEEP.
Note that the test data is not used in either partition of the training
data, namely D, used for candidate model selection and Ds used
for safety test.

To evaluate GUIDED-EPIDEEP with respect to Q1, we will test

if the guidance is incorporated in the test data. For Q1, we train
the model on D, and Ds to incorporate the guidance. Once the
model is trained we evaluate whether the behavior of the model
in forecasting influenza season in T is desirable with respect to
the given guidance. To evaluate the degree to which the behavior
mandated by guidance is met in the test, we compute the probability
that the behavior defined by the guidance g(0), as defined in Section
3, falls outside the bounds. We name this metric as the failure rate
of the model 6. Formally, we define the failure rate as Pr (g;(0)). To
evaluate GUIDED-EPIDEEP with respect to Q2 and Q3, we perform
several case-studies.
Baselines. We use EpiDeep for performance and state of art base-
lines from the FluSight challenge (team names anonymized) for our
case studies to show how they perform in a real-world scenario as
posed by the CDC FluSight challenge.

4.2 Direct Guidance

As mentioned earlier, in the direct guidance mode, the user/expert
provides guidance as well as other parameters. Here, GUIDED-
EpPIDEEP searches for the model which in able to incorporate the
guidance within the constraints imposed by the parameters. For
direct guidance, we evaluate GUIDED-EPIDEEP in terms of Q1 and

0s.

4.2.1 Performance. Here, we want to quantify the rate at which
GuIDED-EPIDEEP is able to ensure that the behavior imposed by
the guidance is met in the test set. To do so, here we split the
historical seasonal influenza data into the training set D which
consists 80% of the seasons and test set T, which has the remaining
seasons. GUIDED-EPIDEEP is trained on D with the smoothness
constraint with a € = 0.25 and § = 0.2 to return a model 6. We

*https://gis.cdc.gov/grasp/fluview/fluportaldashboard html
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repeat the experiment to make forecasts starting at week 40 of the
epidemiological season till week 17. We then measure the failure
rate, as defined earlier, of @ on the test set T for each week. Then
we repeat the experiment with € = 0.5 and § = 0.1. The results are
presented in Figure 3.

As seen in both Figure 3, for both settings, GUIDED-EPIDEEP
almost always ensures that the behavior imposed by the guidance
is carried to the test data T. We observe that only 1 out of 80 obser-
vations, only one GUIDED-EPIDEEP has a failure rate higher than
the threshold 8. On the other hand, the baseline EpiDeep has signifi-
cantly higher failure rate consistently, with the failure rate for many
observations greater than §. This experiment demonstrates that
GuiDED-EPIDEEP ensures that the desirable behavior is observed
while forecasting on test data, while the baselines fail to do so.
Failure in Incorporation of Guidance. In the rare case when
the GUIDED-EPIDEEP fails to return a model (NSF) or the returned
model does not ensure that the desirable behavior is observed in
test data, as in week 52 in Figure 3 (left), the user is free to adjust
one or more of the three knows our framework, data, model, and
tolerance to allow the framework to search for a better forecasting
model. For example, in the same example, setting a higher § may
ensure that the selected model satisfies the constraint in the test
data as well.

4.3 Automatic Guidance

Asmentioned earlier, in the automatic guidance mode, the user/expert
provides the guidance. However, the other parameters are not
known. Here, GUIDED-EPIDEEP searches for the ideal parameter set
which can incorporate the guidance. Here, for automatic guidance,
we evaluate GUIDED-EPIDEEP in terms of all the questions.

4.3.1 Performance. Here, we want to measure if GUIDED-EPIDEEP
can find a parameter which can satisfy the constraints imposed by
the guidance provided by the user. Here we use the same setup
as in Direct guidance. We split the data into training D and test T
sets with 4:1 ratio. The expert’s requirement here is to ensure that
the performance of GUIDED-EPIDEEP is better than the baseline
model EpiDeep. We do so by enforcing that the ratio of RMSE of
GuipeED-EPIDEEP to the RMSE of Epideep is less than 1. And the
parameter to explore/detect is €. We repeated the experiment for
each week in the influenza season. Figure 4 shows the result.

As seen in the figure, for most of the week GUIDED-EPIDEEP is
able to find an € such that the constraint defined by the user is met.
Among, 40 weeks GUIDED-EPIDEEP fails to find € in only 6 weeks,
demonstrating that our framework is able to incorporate expert’s
guidance in the automatic guidance mode. For the weeks where €
could not be found, GUIDED-EPIDEEP communicates its inability to
find a solution to the user.

5 RELATED WORK

Epidemic Forecasting: Epidemic forecasting models and gen-
erally categorized into statistical [1, 6, 20, 27] and mechanistic
based approaches [24, 33]. Ensemble of mechanistic and statistical
approaches too have been proposed [21]. There also has been in-
terest in leveraging external data source in epidemic forecasting
such as social media [8, 17], search engine [11, 32], environmental
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Figure 3: Performance of GUIDED-EPIDEEP in specific guidance. Figures show failure rate (f) for different combinations of
€ and 0: (left) e = 0.25 and § = 0.2; (right) € = 0.5 and § = 0.1. Guided EpiDeep is successful incorporating expert guidance in
epidemic task 7,, for every week w in standard flu season as it is mostly within the bounds given by . Note that f in EpiDeep is
higher than the required tolerance §, but GUIDED-EPIDEEP is able to exhibit the desired behavior within the required tolerance.
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Figure 4: Automatic guidance over weeks. The y axis shows
the value of € found by GuIDED-EPIDEEP in automatic guid-
ance mode. The red crosses represent the weeks where no
suitable € was found.

and weather reports [23, 25], and a combination of heterogeneous
data [7].

Recently, there has been surging interest in leveraging deep learn-
ing for influenza forecasting. Adhikari et al. [1] proposed EpiDeep
which leverages deep architecture to exploit seasonal similarity for
epidemic forecasting. Similarly, Wang et al. proposed DEFSI [30]
which exploits intra and inter seasonal data for forecasting. Other
approaches like [28, 29] have limited use case (example, for mil-
itary population) and/or require external data sources (example,
twitter, weather). However, none of these approaches are able to
incorporate expert guidance.

Time Series Analysis: A field related to o epidemic forecast-
ing in data mining is Time Series Analysis. Several approaches
have been proposed such as auto-regression, kalman-filters and
groups/panels [4, 13, 22]. Several deep learning approaches have
also been used for time series analysis [9, 12].

Guided prediction framework: The Seldonian optimization frame-
work [26] discussed earlier presents a general framework for expert
guided prediction framework. Based on the Seldonian framework,
Metevier et al. [18] proposed Robinhood, an algorithm for fairness
in a bandit setting. Several other approaches have been proposed
for specific fairness objectives as well [14, 15]. However, to the best
of our knowledge, we are the first to introduce a guidance-based
machine learning approach for epidemic forecasting.

6 CONCLUSIONS

In this paper, we study the novel general problem of incorporating
expert guidance to statistical epidemic forecasting methods, using
influenza prediction as an example. Leveraging the Seldonian opti-
mization framework, we showcase a flexible, adaptable framework
which can ensure that the given guidance can be incorporated
subject to some probabilistic tolerance, whilst also maintaining
performance accuracy. Additionally, our method also gives valu-
able feedback to the expert, if the guidance can not be successfully
incorporated, to promote interactions. Via one natural guidance
scenario (smoothness) we show on real CDC surveillance data, that
our method bounds the probability of undesirable behavior while
also reducing RMSE by 17%. As future work, one can focus on ex-
tending this framework to more types of guidance such as regional
equity, and also handling probabilistic predictions (as opposed to
point predictions we considered here).
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