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ABSTRACT
Given a sequence of epidemic events, can a single epidemic model

capture its dynamics during the entire period? How should we

divide the sequence into segments to better capture the dynamics?

Throughout human history, infectious diseases (e.g., the Black

Death and COVID-19) have been serious threats. Consequently,

understanding and forecasting the evolving patterns of epidemic

events are critical for prevention and decision making. To this end,

epidemic models based on ordinary differential equations (ODEs),

which effectively describe dynamic systems in many fields, have

been employed. However, a single epidemic model is not enough

to capture long-term dynamics of epidemic events especially when

the dynamics heavily depend on external factors (e.g., lockdown

and the capability to perform tests).

In this work, we demonstrate that properly dividing the event

sequence regarding COVID-19 (specifically, the numbers of active

cases, recoveries, and deaths) into multiple segments and fitting a

simple epidemic model to each segment leads to a better fit with

fewer parameters than fitting a complex model to the entire se-

quence. Moreover, we propose a methodology for balancing the

number of segments and the complexity of epidemic models, based

on the Minimum Description Length principle. Our methodology

is (a) Automatic: not requiring any user-defined parameters, (b)
Model-agnostic: applicable to any ODE-based epidemic models,

and (c) Effective: effectively describing and forecasting the spread

of COVID-19 in 70 countries.
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1 INTRODUCTION
Infectious diseases have been serious threats to global public health.

They not only change lifestyles of millions of people worldwide

but also bring about dramatic changes in many areas, including

economies, cultures, ecologies, and more. Unfortunately, the war
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8.09X
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(d) Trade-off between model complexity and data fitness.

Figure 1: Proper segmentation helps concisely and accu-
rately describe the spread of COVID-19 in Italy. Dividing the
event sequence (i.e., the numbers of active cases, recoveries,
and deaths) properly into multiple segments and fitting a
simple epidemic model to each segment leads to a more con-
cise model with a better fit than fitting a complex model to
the entire period. See the experiment section for details.

against infectious diseases has continued throughout human his-

tory. The Black Death killed a third of the world’s population in

1340s, and the Spanish flu in 1918 is estimated to have resulted in at

most 500 million deaths. Recent epidemic outbreaks of SARS, Ebola,

Zika, and COVID-19 show that the war is not over yet.

Consequently, understanding and predicting epidemic spreads

are important for prevention and effective decision making. How

many people will be infected within a week? How will lockdowns

affect the spread? To answer these questions, we require a method

that is simple enough to be comprehensible but expressive enough

to accurately model and predict the spread of infectious diseases.

Ordinary differential equations (ODEs) have successfully de-

scribed dynamic systems in various fields, including ecology, eco-

nomics, physics, and biology. ODEs have also been utilized in epi-

demics. Some of the earliest epidemic models, such as SIS, SIR,

and SEIR, are compartment models [10]. These models divide the

population into several compartments and capture patterns of dy-

namic changes in the sizes of the compartments over time. The

dynamics are expressed as predefined ODEs, which are based on

human knowledge, with tunable parameters. While these models

are intuitive and simple, they often have limited expressiveness,
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failing to capture epidemic dynamics accurately. On the other hand,

data-driven models [14, 15] aim to model and forecast co-evolving

time-series data using ODEs, without relying on human knowledge.

They employ latent variables and non-linear differential equations

to capture complicated temporal dynamics.

Despite the development of epidemic models, describing long-

term dynamics of epidemics using a single epidemic model often

faces limitations due to the unpredictability and abruptness of real-

world events. Indeed, various external factors may substantially

change the dynamics of epidemic events. For example, policies

reducing contacts between individuals (e.g., lockdown) and the

capability to perform tests can significantly affect the dynamics.

In this work, we demonstrate that properly dividing an epidemic

event sequence into multiple segments and fitting a simple epi-

demic model to each segment greatly helps describe and predict the

epidemic propagation concisely and accurately. For example, in Fig-

ures 1(a) and (b), the entire sequence of events regarding COVID-19

in Italy is fitted to two epidemic models with different numbers of

parameters. On the other hand, in Figure 1(c), the sequence is split

into multiple segments, and then a simple model is fitted to each

segment. As seen in Figure 1(d), the segmentation leads to 8.09×
smaller fitting error with fewer parameters than using a single

model for the entire sequence.

Then the following questions naturally arise: Given a sequence

of epidemic events, where should we divide it? How many seg-

ments should we divide it into? We propose a segmentation scheme

that greedily decides where to split. It also decides the number of

segments by balancing the fitting error and the sizes of the models

for all segments, based on the Minimum Description Length (MDL)

principle.

We validate our approach using event sequences regarding re-

cent Coronavirus Disease-19 (COVID-19), specifically the numbers

of active cases, recoveries, and deaths in 70 countries. COVID-19

was recognized as a pandemic by theWorld Health Organization. By

early April 2021, 129 million confirmed cases and 2.8 million deaths

were reported worldwide. Our experiments reveal that our segmen-

tation scheme enhances three epidemic models in explaining and

predicting the propagation of COVID-19.

The strengths of our approach are summarized as follows:

• Automatic: It does not require any user-defined parameters,

such as the number of segments.

• Model-agnostic: It is applicable to any ODE-based epidemic

models without being restricted to certain models.

• Effective: Applied to the COVID-19 datasets, it significantly

reduces the fitting error (up to 14.29× with fewer parameters)

and forecasting error (up to 31.54×) of three epidemic models.

Reproducibility: The code and datasets used in the paper is avail-

able in [1].

2 RELATEDWORK
We briefly review previous work on two related topics: epidemic

models and time-series analysis models.

2.1 Epidemic Models.
A variety of epidemic models have been proposed to understand

and predict the spread of infectious diseases [2]. In the SI model, the

population is divided into two different groups: susceptible and in-

fectious; and the size of each group changes based on predefined dif-

ferential equations. Taking realistic conditions, such as reinfection,

recovery, immunity, population change, and exposure, into consid-

eration, the SI model has been extended to SIS, SIR [3], SIRS [9],

SIRD [19], SEIR [8], and many more. The spread of COVID-19 has

been analyzed using modified SIRs: [12] takes human mobility into

account, and [6] considers quarantine controls. These models are

intuitive, explainable, and simple since they are based on human

knowledge. However, they show weakness in capturing long-term

dynamics of epidemic events especially when the dynamics heavily

depend on external factors. In this work, to the best of our knowl-

edge, we adapt segmentation for the first time to epidemic models

and empirically show its effectiveness in capturing and forecasting

epidemic dynamics.

2.2 Time-series Analysis Models.
Mining and modeling time-series data is a building block of many

analytical and predictive tasks, such as pattern discovery [20, 21],

disaggregation [27], and forecasting [11, 14, 15, 17], in a variety

of fields, including social media [13, 18], web [17], and medical

science [7]. Especially, ordinary differential equations (ODEs) have

attracted much attention, due to its simplicity and expressiveness,

and [5, 22, 23, 26] focus on learning ODEs from data. Recently,

[5] introduces a generative model to solve ODEs using neural net-

works. There have been several studies on learning to segment

temporal data [11, 14–16]. [14, 15] slide a fixed sized window and

incrementally forecast co-evolving events based on repeated pat-

terns. While this approach can be effective in real-time forecasting,

it fails to capture long-term patterns, especially when the window

size is not large enough. We show in the experiment section that

our segmentation scheme leads to 3.23× smaller fitting error, with

the same number of parameters, than the segmentation method

inspired by [14]. More importantly, the previous studies focus on

detecting repetitive patterns in activities (e.g., sensor data and mo-

tion events), while we focus on segmenting epidemic data, where

dynamics suddenly change due to external factors, and eventually

better modeling and forecasting the spread of COVID-19.

3 PRELIMINARIES
In this section, we introduce some notations and three main epi-

demic models that are used in the paper. Refer to Table 1 for

the frequently-used notations. We first review the Susceptible-

Infectious-Recovered (SIR) model, which is one of the most classi-

cal compartment models. Then, we introduce two latent dynamics

models that are based on linear and non-linear dynamics of latent

variables.

3.1 Susceptible-Infectious-Recovered (SIR)
Model

The SIR model is one of the most classical epidemic models. Given

a group of individuals of closed population 𝑃 , each individual is

assigned to one of the three states: 𝑆 (susceptible), 𝐼 (infectious),

and 𝑅 (recovered). Here, we use 𝑆 (𝑡), 𝐼 (𝑡), and 𝑅(𝑡) to denote the
number of individuals at the three states, respectively, at timestamp

𝑡 . The model assumes that each individual goes through two types
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Table 1: Frequently-used notations and symbols.

Notation Definition

𝑥 (𝑡) observed epidemic event at time 𝑡

𝑣 (𝑡) estimated epidemic event at time 𝑡

𝑋 = (𝑥 (1), · · · , 𝑥 (𝑛)) observed epidemic event sequence

𝑉 = (𝑣 (1), · · · , 𝑣 (𝑛)) estimated epidemic event sequence

𝑛 length of 𝑋

𝑑 dimension of 𝑥 (𝑡)
𝛽 infection rate

𝛾 recovery rate

𝑆 (𝑡) susceptible population at time 𝑡

𝐼 (𝑡) infected population at time 𝑡

𝑅(𝑡) recovered population at time 𝑡

𝑃 population of the region

𝑤 (𝑡) latent factors at timestamp 𝑡

𝑘 number of latent factors

𝐶𝑜𝑠𝑡 (𝑀) description cost of model𝑀

𝐶𝑜𝑠𝑡 (𝑋 |𝑀) encoding cost of data 𝑋 given model𝑀

𝐶𝑜𝑠𝑡 (𝑋 ) total cost of 𝑋

𝑓 solver for an epidemic model

𝑟 number of segments

𝑋𝑠1:𝑒1 ⊕ · · · ⊕ 𝑋𝑠𝑟 :𝑒𝑟 segmentation of 𝑋 into 𝑟 segments

of transitions: infection and recovery. That is, the state to which

an individual belongs changes from 𝑆 to 𝐼 and then from 𝐼 to 𝑅.

Additionally, the model assumes that the probability of a susceptible

individual to get infected at each time 𝑡 is proportional to the

number of infected individuals with a coefficient 𝛽 , and the model

assumes that the probability of an infected individual to become

recovered at each time 𝑡 is 𝛾 . These dynamics can be expressed as

the following three differential equations, where 𝛽 and 𝛾 are model

parameters:

d𝑆 (𝑡)
d𝑡

= − 𝛽
𝑃
· 𝑆 (𝑡)𝐼 (𝑡),

d𝑅(𝑡)
d𝑡

= 𝛾 · 𝐼 (𝑡),

d𝐼 (𝑡)
d𝑡

=
𝛽

𝑃
· 𝑆 (𝑡)𝐼 (𝑡) − 𝛾 · 𝐼 (𝑡) .

Note that these equations imply 𝑆 (𝑡) + 𝐼 (𝑡) + 𝑅(𝑡) = 𝑃 .

3.2 Non-Linear Latent Dynamics (NLLD) Model
This model [14] consists of two multi-dimensional event sequences:

a 𝑘-dimensional latent (i.e., unobservable) event sequence 𝑤 (𝑡)
and a 𝑑-dimensional observable event sequence 𝑣 (𝑡). The observed
events 𝑣 (𝑡) are assumed to be determined by the following non-
linear dynamical systems of the latent factors𝑤 (𝑡):

d𝑤 (𝑡)
d𝑡

= 𝑝 +𝑄 ×𝑤 (𝑡) +𝐴 ⊙ (𝑤 (𝑡) ⊙𝑤 (𝑡)), (1)

𝑣 (𝑡) = 𝑢 +𝑉 ×𝑤 (𝑡), (2)

where ⊙ denotes the Hadamard product (i.e., the elementwise prod-

uct); and 𝑝 ∈ R𝑘 , 𝑄 ∈ R𝑘×𝑘 , and 𝐴 ∈ R𝑘 describe the linear,

exponential, and non-linear dynamics between latent factors. In

addition,𝑢 ∈ R𝑑 and𝑉 ∈ R𝑑×𝑑 are used to project the latent factors

to the observed events. The model parameters are 𝑝 ,𝑄 ,𝐴, 𝑢,𝑉 , and

the initial condition𝑤 (0) = 𝑤0 of the latent factors.

3.3 Linear Latent Dynamics (LLD) Model
We also consider a special case of the NLLD model, where the

𝑑-dimensional observed event sequence 𝑣 (𝑡) is assumed to be deter-

mined by the following linear dynamical systems of 𝑘-dimensional

latent factors𝑤 (𝑡):

d𝑤 (𝑡)
d𝑡

= 𝑝 +𝑄 ×𝑤 (𝑡),

𝑣 (𝑡) = 𝑢 +𝑉 ×𝑤 (𝑡) .

The NLLD and LLD models can naturally be used as epidemic

models if we regard 𝐼 (𝑡) and 𝑅(𝑡) (i.e., the numbers of infected

and recovered individuals) in the SIR model as the 2-dimensional

observed event sequence 𝑣 (𝑡). Unlike the SIR model, the latent

dynamics models are fully data driven, and thus they capture the

temporal patterns in the event sequences without any prior knowl-

edge of epidemics. Moreover, they describe the dynamics of the

observed events using latent factors, which are not directly ob-

served. Many real-world events are known to be largely affected by

latent factors, and as shown in the experiment section, the latent

dynamic models predict the spread of COVID-19 significantly more

accurate than the SIR model.

Remarks: Our segmentation scheme described in the following

section is model agnostic. That is, it can be applied to any epidemic

or time-series analysis models, including but not limited to the

three considered ones.

4 PROPOSED METHOD
In this section, we present our approach for deciding the number

of segments and their locations automatically without user-defined

parameters. We first define the description length of an event se-

quence. Then, based on the definition, we describe how we adapt

the Minimum Description Length (MDL) principle to evaluate seg-

mentation. Then, we propose a search algorithm for finding the

best segmentation.

4.1 Description Length
Given a sequence 𝑋 and a model𝑀 , the description length (in bits)

of 𝑋 , denoted by 𝐶𝑜𝑠𝑡 (𝑋 ), is defined as:

𝐶𝑜𝑠𝑡 (𝑋 ) := 𝐶𝑜𝑠𝑡 (𝑀) +𝐶𝑜𝑠𝑡 (𝑋 |𝑀)

where the model cost 𝐶𝑜𝑠𝑡 (𝑀) is the number of bits required to

describe the model𝑀 , and the data cost 𝐶𝑜𝑠𝑡 (𝑋 |𝑀) is the number

of bits to encode 𝑋 given𝑀 . The model cost and the data cost are

described below.

4.1.1 Model Cost. To measure the model cost 𝐶𝑜𝑠𝑡 (𝑀), we exam-

ine the parameters of the model𝑀 and their sizes in bits. Below, we

consider the three aforementioned epidemic models. Note that the

model cost of any other models can be measured in a similar way.

• SIR Model: The infection rate 𝛽 and the recovery rate 𝛾 are two

real numbers, and encoding each requires 𝐶𝐹 bits.
1
Thus, the

1
We set𝐶𝐹 to 8 by convention.
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Algorithm 1: Segment: MDL-based Greedy Segmentation

Search

Input : (1) epidemic event stream 𝑋1:𝑛

(2) epidemic model solver 𝑓

Output : segmented event stream 𝑋𝑠1:𝑒1 ⊕ · · · ⊕ 𝑋𝑠𝑟 :𝑒𝑟
1 if 𝑛 ≤ 2 then return 𝑋1:𝑛 ⊲ Base Case

2 𝐶 ← 𝐶𝑜𝑠𝑡 (𝑓 (𝑋1:𝑛)) +𝐶𝑜𝑠𝑡 (𝑋1:𝑛 |𝑓 (𝑋1:𝑛))
3 𝑖∗ ← argmin

𝑖∈{2, · · · ,𝑛−2}
𝐶𝑜𝑠𝑡 (𝑋1:𝑖 ⊕ 𝑋𝑖+1:𝑛) ⊲ Eq. (4)

4 𝐶∗ ← 𝐶𝑜𝑠𝑡 (𝑋1:𝑖∗ ⊕ 𝑋𝑖∗+1:𝑛)

5 if 𝐶∗ ≥ 𝐶 then return 𝑋1:𝑛

6 else return Segment(𝑋1:𝑖∗ , 𝑓 ) ⊕ Segment(𝑋𝑖∗+1:𝑛, 𝑓 )

7 ⊲ Recursive Calls

model cost required to describe the SIR model in bits is:
2

𝐶𝑜𝑠𝑡 (𝑀) = 2 ·𝐶𝐹 .

• Non-linear Latent Dynamics (NLLD) Model: This model is

described by a set of six parameters: 𝑤0, 𝑝 , 𝑄 , 𝐴, 𝑢, and 𝑉 (see

Eq. (1) and Eq. (2)). They contain to 𝑘 , 𝑘 , 𝑘2, 𝑘 , 𝑑 , and 𝑘𝑑 real-

valued parameters, respectively. Thus, the model cost in bits

required to describe the NLLD model is:

𝐶𝑜𝑠𝑡 (𝑀) = (𝑘2 + (3 + 𝑑) · 𝑘 + 𝑑) ·𝐶𝐹 . (3)

• Linear Latent Dynamics (LLD) Model: The model cost re-

quired by the LLD model is:

𝐶𝑜𝑠𝑡 (𝑀) = (𝑘2 + (2 + 𝑑) · 𝑘 + 𝑑) ·𝐶𝐹 .

Note that the cost in bits required to encode 𝐴 is subtracted from

Eq. (3).

4.1.2 Data Cost. The data cost 𝐶𝑜𝑠𝑡 (𝑋 |𝑀) is the number of bits

required to describe𝑋 given𝑀 . We assume the Huffman coding [4]

to encode the difference between the observed event sequence

𝑋 and the event sequence 𝑉 estimated by the model 𝑀 . Then,

the number of bits required is the negative log-likelihood under a

Gaussian distribution N(0, 𝜎2) as follows3:

𝐶𝑜𝑠𝑡 (𝑋 |𝑀) = − log 𝑃 (𝑋 −𝑉 )

= − log
∏𝑛

𝑡=1

∏𝑑

𝑖=1

1

√
2𝜋𝜎2

𝑒
− (𝑥𝑖 (𝑡 )−𝑣𝑖 (𝑡 ) )

2

2𝜎2

where 𝑥𝑖 (𝑡) and 𝑣𝑖 (𝑡) are the 𝑖-th dimension of actual and estimated

events at time 𝑡 .

4.2 Segmentation Evaluation
We adapt theMinimumDescription Length (MDL) principle [25] for

segmentation evaluation. Consider an event sequence 𝑋 (= 𝑋1:𝑛)
and a solver 𝑓 of an epidemic model. We denote the division of 𝑋

into 𝑟 segments where each 𝑖-th segment starts at time 𝑠𝑖 and ends

at time 𝑒𝑖 by

𝑋𝑠1:𝑒1 ⊕ · · · ⊕ 𝑋𝑠𝑟 :𝑒𝑟 ,
2
We ignore the cost required to encode the population 𝑃 since it is required only once

regardless of the number of segments.

3
We fix 𝜎 to the standard deviation of the elements of 𝑋 −𝑉 during the period of

each segment..

where 𝑠1 = 1, 𝑒𝑟 = 𝑛, and 𝑒𝑖 + 1 = 𝑠𝑖+1 for each 𝑖 ∈ {1, · · · , 𝑟 − 1}.
Let 𝑓 (𝑋𝑖:𝑗 ) be the epidemic model fitted to the segment 𝑋𝑖:𝑗 . Then,

the description length in bits of 𝑋𝑠1:𝑒1 ⊕ · · · ⊕ 𝑋𝑠𝑟 :𝑒𝑟 is:

𝐶𝑜𝑠𝑡 (𝑋𝑠1:𝑒1 ⊕ · · · ⊕ 𝑋𝑠𝑟 :𝑒𝑟 ) = (𝑟 − 1) · log2 (𝑛)

+
𝑟∑
𝑖=1

(
𝐶𝑜𝑠𝑡 (𝑓 (𝑋𝑠𝑖 :𝑒𝑖 )) +𝐶𝑜𝑠𝑡 (𝑋𝑠𝑖 :𝑒𝑖 |𝑓 (𝑋𝑠𝑖 :𝑒𝑖 ))

)
, (4)

where (𝑟 − 1) · log
2
(𝑛) is the cost in bits required to encode 𝑟 − 1

splitting points (i.e., 𝑠2, · · · , 𝑠𝑟 ). Since each splitting point is an posi-

tive integer smaller than 𝑛, the number of bits required to encode it

is log
2
(𝑛). The description length (i.e,. Eq. (4)) balances the fitting

error and the size of the parameters required to encode the epidemic

models for all segments, and we use it to evaluate segmentation.

Specifically, based on the MDL principle, we prefer the segmen-

tation that minimizes Eq. (4), and in the following subsection, we

discuss how we search for such a segmentation.

4.3 Segmentation Search
Given an event sequence 𝑋 , how can we find the segmentation that

minimizes the description length (i.e., Eq. (4))? Since there are 2
𝑛

ways to segment a length𝑛 sequence, naïvely trying all possible seg-

ments is computationally prohibitive. Thus, we propose to greedily

segment the sequence, as described in Algorithm 1, throughout

which we make the length of each segment at least two. Given an

event sequence 𝑋1:𝑛 , we find a splitting point 𝑖∗ ∈ {2, · · · , 𝑛 − 2}
where the description length (i.e., Eq. (4)) of the corresponding

segmentation is minimized (Line 3). If splitting 𝑋1:𝑛 at time 𝑖∗

strictly decreases the description length, we divide 𝑋1:𝑛 into 𝑋1:𝑖∗

and𝑋𝑖∗+1,𝑛 , and then recursively divide each segments (Line 6). Oth-

erwise, we stop segmentation (Line 5). In the experiment section,

we show that our greedy segmentation scheme outperforms base-

line with up to 14.29× smaller fitting error with the same number

of parameters.

5 EXPERIMENTS
In this section, we review our experiments designed to answer the

following questions:

• Q1. Effectiveness of Segmentation: Does segmentation help

understand the spread of COVID-19? Does it give a better trade-

off between model complexity and fitness?

• Q2. Effectiveness of our Segmentation Scheme: How well

does our greedy segmentation algorithm based on the MDL prin-

ciple work? Does it yield small fitting error with the same number

of segments than baseline?

• Q3. Accuracy of Forecasting: Is segmentation beneficial for

accurately predicting the spread of COVID-19? Is it beneficial

regardless of epidemic models used?

5.1 Experimental Settings
• Machines: We conducted all the experiments on a machine with

AMD Ryzen 9 3900X CPU and 128GB RAM.

• Datasets: We considered the 70 countries with the most con-

firmed cases as of the end of March, 2021. We used the number

of active cases as 𝐼 (𝑡) and the number of recoveries and deaths
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Figure 2: Segmentation leads to better trade-offs between model complexity and fitting error. For the LLD and NLLD models
without segmentation, 𝑘 varies from 1 to 10.

as 𝑅(𝑡) in each of the 70 countries from March 1, 2020 to March

30, 2021. The dataset is publicly available at [24].
4

• Implementations: We implemented the SIR model, the LLD

model, and the NLLD model in Python. We used the Levenberg-

Marquardt algorithm for optimization.

• How to choose 𝑘: For the LLD and NLLD models, we chose the

number of latent factors 𝑘 between 1 and 6 so that the description

length (i.e., Eq. (4)) is minimized.

5.2 Q1. Effectiveness of Segmentation
We measure how segmentation by Algorithm 1 affects the model

complexity and fitting error of the three considered epidemic mod-

els. As seen in Figure 2, segmentation leads to significantly better

trade-offs between the model cost (in bits) and the fitting error

(in terms of RMSE), regardless of the epidemic models used. For

example, in the India dataset, the NLLD model with segmentation

yields 11.54× smaller fitting error with smaller model cost than

the same model without segmentation. Figure 3 show the input

and estimated event sequences when the description length is mini-

mized. The description length is minimized when a simple epidemic

model with few latent factors is used with an enough number of

segments. Simple epidemic models with segmentation pro-
vide more concise and accurate description of the spread of
COVID-19 than complex models without segmentation. The
results in the other countries can be found in the supplement [1].

4
Since the number of recoveries in the US is not available, we used the number of

deaths as 𝑅 (𝑡 ) .

5.3 Q2. Effectiveness of Our Segmentation
Scheme

Wedemonstrate the effectiveness of our greedy segmentation scheme

based on the MDL principle by comparing it with the incremental

method inspired by [14]. The incremental method goes through the

sequence from the start and initiates a new segment whenever the

fitting error within the current segment exceeds a given threshold

𝜖 . As in [14], we set the threshold proportional to the 𝐿2 norm of

the current segment 𝑋𝑐 with a coefficient 𝛼 . That is, 𝜖 = 𝛼 · | |𝑋𝑐 | |2.
Note that smaller 𝛼 is expected to yield more segments. As seen

in Figure 4, where we fix 𝑘 to 2 and vary 𝛼 from 0.05 to 0.5, our

proposed segmentation scheme significantly outperforms the incre-

mental method. Specifically, our scheme gives up to 3.23× smaller

fitting error with the same model cost, which is proportional to

the number of segments, than the incremental segmentation. The

results in the other countries can be found in the supplement [1].

5.4 Q3. Accuracy of Forecasting
We examine the effect of segmentation on the the accuracy of future

prediction using the three considered epidemic models. To this end,

we divide each sequence into the training sequence and the test

sequence, which span 327 days and 37 days, respectively. Then, we

fit the epidemic models to each training sequence with and without

segmentation and predict the event sequence during the test period.

When segmentation is applied, for stable prediction, we ensure that
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Active Cases (True) Recovery/Death (True) Active Cases (Estimated) Recovery/Death (Estimated)

X 1,000

(a) India (𝑘 = 3)

X 1,000

(b) Panama (𝑘 = 2)

X 1,000

(c) Morocco (𝑘 = 3)

X 1,000

(d) Croatia (𝑘 = 1)

X 1,000

(e) Brazil (𝑘 = 1)

X 1,000

(f) Canada (𝑘 = 2)

X 1,000

(g) Egypt (𝑘 = 1)

X 1,000

(h) France (𝑘 = 2)

X 1,000

(i) Germany (𝑘 = 2)

X 1,000

(j) Japan (𝑘 = 1)

X 1,000

(k) Poland (𝑘 = 1)

X 1,000

(l) Qatar (𝑘 = 1)

Figure 3: Simplemodels withmultiple segments are preferred over complexmodels without segments. The true and estimated
event sequences when the description length in bits is minimized.

the last segment is at least as long as the test period,
5
and we use

the model fitted to the last segment of the training sequence for

prediction. For the LLD and NLLD models without segmentation,

we vary the the number of latent factors 𝑘 from 1 to 6.

In Table 2, we compare the prediction error (in terms of RMSE) of

the three epidemic models with and without segmentation. When

the LLD model or the NLLD model is used, among 7 different set-

tings, our segmentation scheme leads to the most accurate predic-

tion in 32 and 33 (out of 70) countries, respectively. The second

best one, which is the LLD model with 𝑘 = 2 and no segmenta-

tion, is most accurate only in 9 countries. When the SIR model is

used, segmentation increases the prediction accuracy in 70 (out of

70) countries. Moreover, prediction without segmentation is un-

stable with unreasonably large RMSE in some countries, while it

is stable with segmentation in all countries. To sum up, segmen-
tation tends to improve the prediction accuracy of all three
considered epidemic models.

Note that with segmentation, only the last segment, not the entire

sequence, is used for prediction. Despite the fact, segmentation

increases the accuracy of prediction by letting epidemic models

focus on the part that represents the current epidemic dynamics

while ignoring the part before inherent changes in the dynamics.

5
We can ensure this by Algorithm 1 so that it never splits the training sequence during

its last 37 days.

6 CONCLUSIONS
In this work, we propose to divide epidemic event sequences into

multiple segments and fit a simple model to each segment. To this

end, we propose a greedy algorithm based on the MDL principle

to decide where to split the sequences. Through extensive experi-

ments using the COVID-19 event sequences from 70 countries, we

demonstrate that our methodology has the following advantages:

• Automatic: All parameters are tuned automatically based on

the MDL principle without relying on users.

• Model-agnostic: Any ODE-based epidemic models can be used

with our segmentation scheme.

• Effective:The fitting error and prediction error of three epidemic

models decrease up to 14.29× and 31.54×, respectively, with our

segmentation scheme.

Reproducibility: The code and datasets used in the paper is avail-

able in [1].
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Table 2: Segmentation is helpful to accurate prediction of the spread of COVID-19. We compare the prediction error (in terms
of RMSE, recorded in units of 1, 000) of each epidemic model equipped with our segmentation scheme (‘ours’) and the model
without segmentation but with different numbers of latent factors.

Linear Latent Dynamics (LLD) Non-linear Latent Dynamics (NLLD) SIR

Country Single Segment (𝑟 = 1) Ours Single Segment (𝑟 = 1) Ours (𝑟 = 1) Ours

𝑘 = 1 𝑘 = 2 𝑘 = 3 𝑘 = 4 𝑘 = 5 𝑘 = 6 𝑘 = 1 𝑘 = 2 𝑘 = 3 𝑘 = 4 𝑘 = 5 𝑘 = 6

Argentina 88.2 211.7 52.4 53.0 54.5 53.6 56.2 114.0 382.7 329.7 83.7 236.3 39.6 65.0 1,301.8 107.4
Armenia 43.4 16.3 17.1 16.4 12.8 13.8 3.7 38.5 43.0 30.5 10.2 32.6 12.3 2.2 115.1 2.4
Austria 40.0 45.0 22.8 37.7 20.6 48.6 10.5 39.3 74.0 106.7 26.7 68.7 21.1 10.1 291.9 19.3
Azerbaijan 65.8 125.6 40.2 40.1 40.1 37.4 11.4 41.5 37.2 46.8 43.1 40.5 39.7 12.2 161.4 2.6
Bangladesh 90.3 15.8 10.2 10.2 9.0 11.8 6.6 111.8 19.6 27.6 64.0 98.4 11.7 27.8 350.2 6.5
Belarus 73.4 10.1 10.4 7.8 5.3 5.9 2.1 11.5 49.0 73.4 19.9 6.1 6.8 6.2 177.7 24.2
Belgium 160.0 16.5 71.9 67.6 67.0 73.3 21.0 325.1 29.5 85.5 70.8 65.5 38.6 11.6 - 29.4
Bolivia 14.4 17.3 3.5 4.0 5.2 5.7 53.9 9.8 57.7 3.3 14.8 4.7 8.5 81.0 133.0 30.0
Brazil 289.0 242.8 116.6 120.2 118.5 115.6 177.6 223.9 542.7 621.4 193.6 523.3 215.3 95.0 6,252.0 682.3
Bulgaria 71.3 91.4 91.2 77.5 76.2 76.4 78.4 78.3 130.4 518.3 126.3 100.5 102.1 89.5 144.4 13.5
Canada 65.0 141.2 39.0 120.8 25.5 25.5 50.8 84.6 43.6 98.5 45.2 61.4 52.0 74.2 545.3 68.1
Chile 95.1 211.3 16.2 16.1 16.6 17.7 13.3 188.4 29.8 17.3 26.7 55.3 111.9 40.9 519.6 60.9
Colombia 483.3 94.8 84.8 84.1 82.5 82.1 110.0 365.5 602.0 118.0 93.9 88.9 97.6 158.3 1,470.1 161.5
Costa Rica 23.3 4.4 4.5 10.6 12.6 12.9 13.9 37.1 8.4 6.2 6.7 9.4 11.8 17.2 117.9 9.8
Croatia 61.7 22.3 41.7 26.3 22.6 22.5 2.8 104.5 38.5 64.6 32.1 48.6 39.8 2.4 164.7 7.4
Czech 145.8 69.0 71.6 105.7 110.2 109.6 71.8 114.9 172.0 206.8 110.3 109.6 111.0 118.1 678.2 98.9
Denmark 36.8 22.1 34.2 34.9 33.3 34.7 11.7 32.7 32.6 73.1 37.3 37.5 28.4 19.8 138.3 8.8
Dominican Rep. 9.9 8.4 9.8 9.8 9.9 9.3 17.5 11.0 9.2 10.8 10.8 9.2 11.2 17.5 127.2 21.2
Ecuador 40.0 11.7 10.8 11.0 12.2 11.4 10.0 64.3 11.5 11.9 17.1 11.1 11.4 10.2 167.2 19.3
Egypt 30.4 26.0 7.7 8.3 8.0 9.6 14.7 9.7 26.0 9.9 8.1 11.4 12.8 13.4 103.0 8.4
France 62.8 83.1 76.6 90.3 114.1 95.2 41.8 81.8 98.7 159.4 66.0 73.3 95.8 92.7 - 250.4
Georgia 34.3 26.1 83.4 40.3 29.1 30.1 15.4 45.5 64.1 74.1 59.2 38.2 91.4 6.1 182.1 9.5
Germany 467.4 72.0 71.1 72.5 71.6 72.5 67.8 591.2 98.7 180.5 326.0 160.7 104.6 88.9 1,513.3 174.2
Greece 12.9 14.4 16.3 18.2 17.9 18.7 12.6 13.7 16.6 18.8 15.7 18.4 17.9 10.4 85.6 11.7
Guatemala 38.6 1.0 1.0 1.1 1.1 1.3 3.1 32.6 36.3 16.9 1.0 23.9 1.1 19.4 110.7 9.8
Honduras 5.7 8.7 7.9 7.0 8.1 7.2 16.5 5.1 11.2 10.5 7.9 7.8 7.2 15.4 78.8 12.1
Hungary 119.8 71.0 30.3 30.1 30.6 30.4 53.2 168.9 97.7 46.4 34.8 46.7 39.3 22.9 218.2 25.5
India 3,517.9 145.8 180.3 430.2 590.6 705.5 45.0 1,629.2 142.9 278.4 315.5 242.9 424.0 111.4 7,571.9 171.0
Indonesia 21.2 32.7 30.3 23.3 25.7 27.1 45.5 27.3 51.8 28.9 24.9 24.3 22.7 70.7 719.7 162.4
Iran 271.7 63.5 70.3 70.1 70.4 67.7 48.7 182.4 228.1 1,982.8 81.5 76.7 72.5 65.0 944.9 90.9
Iraq 64.2 50.8 43.1 34.3 31.7 35.1 35.3 84.1 53.4 56.0 42.8 35.8 40.1 27.2 436.2 20.6
Ireland 88.7 55.4 55.3 56.0 17.5 14.6 33.7 71.9 76.3 76.4 13.6 13.5 18.0 2.4 119.4 22.3
Israel 35.3 22.1 21.5 20.3 22.1 26.4 131.7 47.4 121.6 19.6 15.4 19.9 20.9 87.8 451.3 92.2
Italy 459.8 806.5 318.1 362.5 349.1 245.8 60.0 550.8 426.8 320.7 321.7 245.8 362.3 120.7 1,611.9 156.4
Japan 65.1 64.8 53.9 54.1 55.2 56.5 82.6 76.4 74.3 67.1 64.9 61.6 63.3 77.6 261.5 55.8
Jordan 37.0 103.6 183.0 106.6 79.4 84.6 11.8 50.5 107.2 106.2 76.1 81.3 100.4 13.6 232.3 17.9
Kazakhstan 38.8 16.2 15.9 15.9 16.5 15.7 5.0 50.8 15.6 16.4 8.1 10.1 14.2 21.9 156.9 18.5
Kuwait 7.1 7.0 4.5 4.7 5.6 4.8 3.5 22.6 7.5 19.0 11.7 5.8 4.8 4.9 116.8 9.9
Lebanon 33.1 38.0 31.5 38.5 38.1 38.6 94.5 33.8 26.0 35.2 40.8 40.9 41.6 85.2 175.7 64.1
Lithuania 57.9 41.0 40.6 36.4 42.2 42.2 29.1 41.2 55.7 94.7 127.9 55.7 56.1 28.7 122.3 11.1
Malaysia 14.4 14.8 22.1 22.7 24.5 23.3 29.6 35.0 28.2 23.4 25.0 25.1 25.2 21.2 148.1 53.3
Mexico 135.8 75.8 78.2 69.0 69.6 77.8 97.9 144.5 71.8 73.5 76.6 70.7 66.8 81.9 1,192.0 165.0
Moldova 47.6 5.9 5.9 6.1 6.0 6.4 6.4 46.0 6.4 6.6 20.6 6.3 7.5 5.2 112.4 9.0
Morocco 85.3 13.9 14.0 15.1 17.2 16.3 1.3 61.5 62.2 111.7 22.3 19.9 87.1 7.6 328.3 10.6
Nepal 90.3 15.0 15.0 49.7 42.7 41.1 4.9 30.8 40.4 4.4 70.5 47.2 54.5 3.0 190.9 2.8
Netherlands 83.1 102.9 42.9 37.8 39.0 44.1 128.8 108.4 65.7 100.9 115.8 41.6 42.6 140.4 - 55.2
Pakistan 16.6 33.3 13.8 18.0 18.2 18.1 3.5 9.2 33.6 69.3 25.4 27.7 18.2 11.7 374.1 25.0
Panama 28.4 33.5 23.9 23.7 23.7 23.4 47.7 29.9 27.4 28.9 40.2 29.0 26.7 271.4 214.6 23.8
Paraguay 13.0 3.3 3.0 2.5 1.8 1.8 2.8 15.8 3.7 3.9 4.4 10.4 8.1 10.3 86.0 10.9
Peru 49.3 43.3 43.3 43.3 43.3 43.3 53.2 228.7 71.9 162.3 144.9 308.0 39.7 41.5 813.8 93.8
Philippines 157.4 53.1 39.1 38.7 35.6 14.4 11.9 89.2 78.3 119.0 12.5 39.0 24.5 11.9 361.1 26.9
Poland 218.1 119.4 100.9 94.3 89.1 97.6 63.8 168.8 208.6 71.1 79.0 92.3 72.4 50.8 970.4 78.1
Portugal 58.7 78.5 80.4 80.0 79.6 80.2 268.2 54.3 83.0 86.5 78.4 88.4 89.1 165.1 452.8 144.1
Qatar 24.2 10.8 5.6 6.7 5.5 6.9 3.8 34.0 16.6 5.4 5.4 12.8 5.8 3.8 104.8 5.0
Romania 119.4 55.6 71.8 57.9 72.9 74.7 18.2 180.4 142.1 91.6 72.1 120.0 83.4 28.8 505.9 34.0
Russia 443.7 56.9 187.5 182.3 176.9 279.9 36.5 243.0 540.5 56.3 99.1 167.3 924.9 266.1 2,507.5 249.2
Saudi Arabia 86.6 12.2 6.5 6.3 5.8 5.5 3.6 49.4 10.8 16.5 13.3 9.0 5.4 5.2 260.8 4.1
Serbia 224.7 240.3 49.6 169.1 167.0 167.0 78.7 87.5 42.2 24.1 136.6 151.3 138.8 104.8 289.9 22.5
Slovakia 55.2 20.8 30.2 22.1 18.0 19.9 31.4 52.2 17.9 59.2 21.7 54.3 19.2 20.0 172.1 32.1
Slovenia 46.8 4.4 18.5 10.3 26.5 26.7 5.7 19.7 9.2 26.3 21.7 30.1 39.0 5.8 113.6 17.8
South Africa 239.2 187.0 56.1 63.8 64.1 41.3 1,138.3 222.2 175.9 64.6 52.0 65.5 64.5 1,639.5 988.8 76.2
Spain 648.6 86.1 82.6 81.7 81.3 81.2 449.0 568.1 266.8 82.2 72.8 84.7 85.0 162.7 - 379.2
Sweden 57.0 48.4 46.1 46.2 46.0 46.2 133.9 69.8 21.3 44.6 43.1 57.3 56.6 185.9 - 42.9
Switzerland 88.1 84.0 83.2 84.1 84.5 83.2 18.5 66.7 91.6 88.2 82.8 90.6 91.6 15.1 274.1 22.8
Tunisia 22.6 19.5 19.5 19.7 20.5 20.4 27.4 24.0 24.2 22.4 23.2 23.2 22.9 56.4 130.7 26.4
Turkey 220.4 287.0 227.8 418.9 461.3 476.3 144.4 247.4 241.3 209.1 619.6 479.1 509.8 177.2 1,741.9 98.4
UAE 79.8 50.0 27.4 19.0 20.8 18.6 51.4 18.9 47.6 20.0 19.3 14.6 37.1 71.9 224.1 52.8
UK 236.7 363.8 510.5 432.3 360.7 355.7 821.7 236.3 606.8 576.0 785.8 457.7 639.5 963.0 - 377.8
Ukraine 287.4 130.7 105.0 109.9 103.2 108.5 80.2 373.9 186.8 220.0 150.2 106.4 196.2 86.2 813.1 57.6
US 137.8 144.7 134.1 134.4 132.0 90.0 134.9 139.9 117.1 148.0 196.2 160.6 123.7 114.8 - 100.3

No. Rank 1 6 9 6 4 5 8 32 5 6 6 7 6 7 33 0 70
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