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Diffusion source identification on networks is a problem of fundamental

importance in a broad class of applications including rumor controlling and

virus identification. Though this problem has received significant recent

attention, most studies have focused only on very restrictive settings and

lack theoretical guarantees for more realistic networks. We introduce a

statistical framework for the study of diffusion source identification and

develop a confidence set inference approach inspired by hypothesis testing.

Our method efficiently produces a small subset of nodes, which provably

covers the source node with any pre-specified confidence level without

restrictive assumptions on network structures. To our knowledge, this is

the first diffusion source identification method with a practically useful

theoretical guarantee on general networks. We demonstrate our approach

via extensive synthetic experiments on well-known random network models

and a mobility network between cities concerning the COVID-19 spreading.
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1 Introduction
One pressing problem today is the spreading of misinformation

or malicious attacks/virus in various cyberspaces. For example, ru-

mors and fake news on social networks may result in many serious

political, economic, and social issues [25]. Viruses that spread via

emails and computer communication may cause severe privacy and

leakage problems [10, 19, 27]. The negative impacts stem from a

few source users/locations and then spread over the social networks

via a diffusion process in such events. One crucial step to reduce the

loss from such an event is to quickly identify the sources so that

counter-measures can be taken in a timely fashion.

Though early practices have been done for this important prob-

lem with motivations from various domains, systematic research on
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this problem only began very recently, arguably starting from the

seminal work of [21], which proposed a rumor center estimator that

can be located by an efficient message-passing algorithm with linear

time complexity. Despite the significant interest and progress on this

problem in recent years [6–8, 14, 22, 28], many challenges remain

unaddressed. First, the theoretical understanding of these methods

is currently only available under very restrictive and somewhat

unrealistic structural assumptions of the networks such as regular
trees. This is perhaps partially explained by the well-known com-

putational hardness about the probabilistic inference of diffusion

process in general graphs [23]. Therefore, intuitive approximations

have been used for general networks [13, 20]. However, such meth-

ods lack theoretical guarantees. Second, even for regular trees, the

available performance guarantee is far from being useful in practice.

Even in the most idealized situation of infinite regular trees, the

correct probability of the rumor center is almost always below 0.3

[8, 21, 28]. For general graphs, as we show later, the correct rate of

such a single-point estimation method only becomes too low to be

practical.

To guarantee higher success probability, a typical approach, as in

both machine learning theory [24] and data-driven applied models

[16], is perhaps to obtain more data. However, a fundamental chal-

lenge in diffusion source identification (DSI) is that the problem by
nature has only one snapshot of the network information, i.e., the earli-
est observation about the infection status of the network.

1
Therefore,

compared to classic learning tasks, DSI poses a fundamentally differ-

ent challenge for inference.It is the above crucial understanding that

motivates our adoption of a different statistical inference technique,

the confidence set. Previously systematic statistical studies adopt

the confidence set approach for DSI on trees [6, 7, 14]. Though they

enjoy good theoretical properties, the methods are applicable only

on infinite trees.

This paper aims to bridge the gap between practically useful algo-

rithms and theoretical guarantees for the DSI problem.We introduce

a new statistical inference frameworkwhich provably includesmany

previous methods [20, 21] as special cases. Our new framework not

only highlights the drawback of the previous methods but, more

importantly, also leads to the design of our confidence set inference

approach with finite-sample theoretical guarantee on any network

structures.

As a demonstration, consider the example of the COVID-19 spread-

ing procedure in early 2020. Figure 1 shows a travel mobility network

between 49 major cities in China, constructed from the two-week

travel volume [11, 15] before the virus caught wide attention. The

1
Since infected nodes are usually indistinguishable and equally infectious, any addi-

tional information in later observations only tells us which new or additional nodes
are infected and is not helpful for us to infer the source node.
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square nodes (21 out of 49) are all cities with at least five confirmed

cases of the virus on Jan 24, 2020. The DSI problem is: given only

knowledge about the mobility network and which cities have de-

tected a notable amount of confirmed cases (in this case, at least 5) ,

can we identify in which city the virus was first detected?

Fig. 1. The mobility network and the COVID-19 infection status of major
Chinese cities on Jan 24, 2020. Colored square nodes are cities with at least
five confirmed cases.

This problem turns out to be too difficult for precise identifica-

tion. None of the single-point source identification methods under

evaluation can successfully identify Wuhan due to its relatively

non-central position from the network (details in Section 5). Nev-

ertheless, both of our 80% and 90% confidence sets cover Wuhan

correctly, giving recommendations of 6 nodes and 11 nodes (out

of 49 cities), respectively. In fact, the evaluation on all the whole

week after the lockdown of Wuhan reveals that both confidence

sets correctly cover Wuhan in all the seven days, while the single-

point estimation methods are rarely effective. Such a result evidently

shows the necessity of adopting confidence set approach and the

effectiveness of our solution.Our contributions in this paper can be

summarized in three-folds.

(1) We introduce an innovative statistical framework for the DSI

problem. It includes several previous methods as special cases,

but has the potential for more effective inference.

(2) Under our framework, we propose a general way to construct

the source node confidence set, whose validity can be guaran-

teed for finite sample size and any network structures. It is the

first DSI method with a theoretical performance guarantee

on general networks, to the best of our knowledge.

(3) We propose techniques that dramatically improve the com-

putational efficiency of our inference algorithm. En route, we

develop a generalized importance sampling method, which

may be of independent interest.

A high-level message in the paper is that the confidence set ap-

proach, which did not receive adequate attention in the machine

learning literature, can be an important tool for inference tasks,

especially for challenging problems with limited available data.

2 Preliminaries
We start by formalizing the Diffusion Source Identification (DSI)

problem, introduced in the seminal work of Shah and Zaman [21].

Consider a network 𝐺 with node set 𝑉 = {1, · · · , 𝑛} and edge set 𝐸.

For ease of presentation, we focus on unweighted and undirected

networks but it is straightforward to generalize the model and our

framework to weighted networks. We write (𝑢, 𝑣) ∈ 𝐸 if node 𝑢 and

𝑣 are connected. The network can be equivalently represented by

its 𝑛 × 𝑛 binary adjacency matrix 𝐴, where 𝐴𝑢𝑣 = 𝐴𝑣𝑢 = 1 if and

only if (𝑢, 𝑣) ∈ 𝐸.
There is a source node 𝑠∗ ∈ 𝑉 on the network 𝐺 initiating a

diffusion of a certain effect (rumor, fake news or some virus) over the

network𝐺 . We embed our inference of the diffusion procedure under

the widely-adopted “Susceptible-Infected" (SI) model [1, 21], though

our approach can be easily tailored to other diffusion procedure as

well. In the SI model, the source node 𝑠∗ is the only “infected" node

initially. The infection diffuses as follows: given the set of currently

infected nodes after 𝑡 − 1 infections, the next infection happens

by sampling uniformly at random one of the edges connecting an
infected node and a susceptible node. Consequently, a full diffusion
path with 𝑇 infections can be represented by a sequence of 𝑇 + 1

nodes in the infection order. We define the diffusion path space to be

Z𝑇 = {𝒗 = {𝑠∗ = 𝑣0, 𝑣1, · · · , 𝑣𝑇 } : 𝑣𝑡 ∈ 𝑉 , 𝑣𝑡1 ≠ 𝑣𝑡2
if 𝑡1 ≠ 𝑡2, and (𝑣𝑡 , 𝑣𝑡 ′) ∈ 𝐸 for some 𝑡 < 𝑡 ′ }

However, in practice, when the occurrence of the infection is no-

ticed, we have already lost the information about the diffusion path.

Instead, the available data only contain the snapshot of the cur-

rent infection status on the network without the infection order.

Formally, the data can be represented as an 𝑛-dimensional binary

vector 𝑦 with 𝑦𝑖 = I(𝑖 is infected) ∈ {0, 1}, where I is the standard
indicator function. Therefore, the sample space of the DSI problem
can be defined as

Y𝑇 = {𝑦 ∈ {0, 1}𝑛 : ∥𝑦∥1 = 𝑇, such that {𝑖 : 𝑦𝑖 = 1}
induces a connected subgraph of 𝐺}.

Equivalently, we will also think of any 𝑦 ∈ Y𝑇 as the a infected

subset of nodes 𝑉𝐼 ⊂ 𝑉 with size 𝑇 . The DSI problem can then be

defined as follows.

Definition 1 (Diffusion Source Identification). Given one sample
𝑦 ∈ Y𝑇 , identify the source node 𝑠∗ of the diffusion process that
generates 𝑦.

Challenges. The challenge of DSI intrinsically arises from the loss

of information in the observed data. Specifically, by definition, we

have a many-to-one mapping Z : Z𝑇 → Y𝑇 , such that Z (·) maps

a diffusion path to the corresponding infection snapshot of the

network. Information about the infection order has been lost upon

the observation of data 𝑦. Nevertheless, the DSI problem looks to

identify the first node in the infection order, with access to only

one snapshot of the infection status. Note that obtaining multiple

snapshots over time does not reduce the difficulty of DSI. This is

because, given the current snapshot, later observed data carry no

additional information about the source node due to the Markov

property of the SI model.

2
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3 A General Statistical Framework for DSI with
Confidence Guarantees

3.1 DSI as Parameter Estimation
We start by formulating DSI under a systematic statistical frame-

work, which will help in our design of better inference methods

later on. Treating the network𝐺 as fixed and 𝑠∗ as the model param-

eter, the probability of generating data 𝑦 ∈ Y𝑇 can be represented

by P𝑠∗ (𝑌 = 𝑦) = 𝑝 (𝑦 |𝑠∗) . where random variable 𝑌 denotes the

observed data. The identification of 𝑠∗ can then be treated as a pa-

rameter estimation problem. Specifically, we consider the following

general parameter estimation framework. Given any discrepancy
function ℓ : Y𝑇 ×Z𝑇 → [0,∞), we want to find an estimator of 𝑠∗

based on the following optimization problem:

minimize𝑠 E𝑠 ℓ (𝑦, 𝑍 ) (1)

in which 𝑍 ∈ Z𝑇 is the random diffusion path following the SI

model starting from parameter 𝑠 and E𝑠 denotes the expectation
over 𝑍 . That is, we look to select the 𝑠 that the diffusion path 𝑍 it

generates has theminimum expected discrepancy from our observed

data 𝑦.

Remark 1. An important design here is that the discrepancy func-

tion ℓ is defined on Y𝑇 × Z𝑇 , not on Y𝑇 × Y𝑇 . That is, 𝑦 will be

compared with the random diffusion path while not merely the

snapshot induced by the path. This is because 𝑍 contains richer

information about the diffusion process. As we show later, this turns

out to be very crucial for designing effective discrepancy functions.

Notice that our framework include a few previous methods as

special cases. Due to space limit, all formal proofs in this paper have

been deferred to the Appendix. Instead, intuition and explanations

are provided as needed.

Proposition 1. (1) If ℓ𝑟𝑐 (𝑦, 𝑧) = 1 − I(𝑦 = Z (𝑧)), when the net-
work is an infinite regular tree, procedure (1) gives the rumor
center of Shah and Zaman [21].

(2) If ℓ𝑠𝑒 (𝑦, 𝑧) = ∥𝑦 − Z (𝑧)∥2
2
, the squared Euclidean distance be-

tween𝑦 and Z (𝑧), the discrepancy is equivalent to the symmetric
difference in [20]2.

Proposition 1 also reveals some key drawbacks of the rumor

center method and its variants. First, the discrepancy function ℓ𝑟𝑐
only takes two values, and it treats all configurations 𝑧 with Z (𝑧) ≠ 𝑦
equally. Therefore, such a function may not be sufficiently sensitive

for general networks. From this perspective, ℓ𝑠𝑒 is potentially better.

Second, and importantly, both of the above discrepancy functions

only depend on Z (𝑧), failing to leverage the diffusion order of the 𝑧.
Ignoring such information may also undermine the performance.

To overcome these drawbacks, we propose the following family of

discrepancy functions as a better alternative. We call this family the

canonical family of discrepancy functions.

Definition 2 (Canonical Discrepancy Functions). Consider a class
of discrepancy functions ℓ that can be written in the following form

ℓ (𝑦, 𝑧) = −
∑
𝑣:𝑦𝑣=1

I(𝑣 ∈ 𝑧)ℎ(𝑡𝑧 (𝑣)), (2)

2
However, different from our framework, [20] used an approximation metric to this

discrepancy for DSI.

in which 𝑡𝑧 (𝑣) is the infection order of node 𝑣 in path 𝑧 and ℎ is a non-
increasing weight function. When 𝑣 ∉ 𝑧, we define 𝑡𝑧 (𝑣) = ∞.

The canonical form (2) is essentially a negative similarity function.

It incorporates both the infection status and the infection order of 𝑧.

The weight function ℎ incorporates the diffusion order such that if 𝑧

deviates from𝑦 at an early stage, the deviation is treated as a stronger

signal for their discrepancy, compared with the case when they only

deviates at a later stage of the diffusion. Conceptually, this canonical

family is general enough to incorporate the needed information for

the diffusion process. In addition, as shown in Section 3.4, it admits

fundamental properties that make the computation very efficient. As

a special case, we demonstrate that ℓ𝑠𝑒 is equivalent to a discrepancy

function with ℎ(𝑡𝑧 (𝑣)) ≡ 2, as follows

∥𝑦 − Z (𝑧)∥2
2
=

𝑛∑
𝑖=1

I(𝑦𝑖 ≠ Z (𝑧)𝑖 ) = 2𝑇 − 2

∑
𝑣:𝑦𝑣=1

I(𝑣 ∈ 𝑧).

Therefore 𝐿2 is equivalent to Eq. (2) with 𝑓 (𝑡𝑧 (𝑣)) ≡ 2.

In this paper, we are particularly interested in the following nat-

ural configuration as the discrepancy function, which we call the

“Averaged Deviation - inverse Time" (ADiT), which takes the

canonical family form (2) with the inverse time weights:

ℎ(𝑡𝑧 (𝑣)) =
1

𝑡𝑧 (𝑣)
. (3)

In Table 1 of Section 5, we show the simulation performance of

the single-point estimation by our framework compared to other

methods. Though our methods demonstrate improvements, the

accuracy is universally low in all situations for all methods. Such

an observation indicates that it is generally impossible to recover

the source node by a single estimator with high accuracy. Indeed, as

shown in Dong et al. [8], Shah and Zaman [21], Yu et al. [28], even in

the ideal infinite regular tree for which the rumor center is proved to

be optimal in the MLE sense, the probability of correct source node

identification turns out to still be low (≤ 0.3). Such a low accuracy is

far from useful in real-world applications, suggesting the necessity

of developing alternative forms of inference, which is we embark

on in the next section.

3.2 Confidence Set
As mentioned previously, single point estimators suffer from low

success rates, rendering them unsatisfactory in real-world applica-

tions. To identify the source node with a nontrivial performance

guarantee, we propose constructing a small subset of nodes that

provably contains the source nodes with any pre-defined confi-

dence. This insight motivates our use of the confidence set as the
DSI method.

Definition 3. Let 𝑌 be the random infection status of the stochastic
diffusion process starting from 𝑠∗. A level 1 − 𝛼 confidence set of the
source node is a random set 𝑆 (𝑌 ) ⊂ 𝑉 depending on 𝑌 for which

P(𝑠∗ ∈ 𝑆 (𝑌 )) ≥ 1 − 𝛼.

Surprisingly, the idea of using confidence set to infer the diffusion

source – though arguably a natural one in statistics – has not been

explored much in the context of DSI. The most relevant to ours are

probably Bubeck et al. [6], Khim and Loh [14] and Crane and Xu [7].

Bubeck et al. [6] considered identifying the first node of a growing

3
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tree but not a diffusion process. Khim and Loh [14] extended the

idea to the SI model but only for infinite regular tree and asymptotic

setting. Despite its theoretical merits, this method is not practical.

For example, even consider the situation of an infinite 4-regular tree

as the network structure, applying the method of Khim and Loh [14]

would indicate a confidence set of size 4
11 ≈ 5 × 10

6
, regardless of

the infected size 𝑇 . This is far too large for almost any applications,

let alone the fact that infinite regular tree itself is unrealistic. Crane

and Xu [7] makes the inference more effective, but still rely on the

tree-structure assumption.

We instead take a completely different yet natural approach based

on our statistical framework for the problem. To ensure the validity

of the inference for any network structures, we will rely on the gen-

eral statistical inference strategy for the confidence set construction.

We first introduce a testing procedure for the hypothesis 𝐻0 : 𝑠
∗ = 𝑠

against the alternative hypothesis 𝐻1 : 𝑠
∗ ≠ 𝑠 . Given a discrepancy

function ℓ , data𝑦 and the node 𝑠 under evaluation, define the testing

statistic to be our loss 𝑇𝑠 (𝑦) = E𝑠 ℓ (𝑦, 𝑍 ) for any data 𝑦. Then the

p-value of the test is defined to be

𝜓𝑠 = P𝑠 (𝑇𝑠 (Z (𝑍 )) ≥ 𝑇𝑠 (𝑦)) . (4)

where the probability P𝑠 is over the randomness of the path 𝑍

generated from the random diffusion process starting from 𝑠 . The

p-value is the central concept in statistical hypothesis testing, and it

gives a probabilistic characterization of how extreme the observed

𝑦 deviates from the expected range for random paths that are truly

from 𝑠 [18]. For a level 1 − 𝛼 confidence set, we compute𝜓𝑠 for all

nodes 𝑠 and construct the confidence set by

𝑆 (𝑦) = {𝑠 : 𝜓𝑠 (𝑦) > 𝛼}. (5)

The following result guarantees the validity of the confidence set

constructed above.

Theorem 1. The confidence set constructed by (5) is a valid 1 − 𝛼
confidence set.

Notice that Theorem 1 is a general result, independent of the

network structure or the specific test statistic we use. However, the

validity of the confidence set only gives one aspect of the inference.

We would like to have small confidence sets in practice since such

a small set would narrow down our investigation more effectively.

The confidence set size would depend on the network structure

and the corresponding effectiveness of the discrepancy function

(the test statistic). We will use the proposed ADiT to define our test

statistic. As shown in our empirical study, it gives excellent and

robust performance across various settings.

3.3 Algorithmic Construction of Confidence Sets
The exact evaluation of the statistic𝑇𝑠 (𝑦) and p-value𝜓𝑠 is infeasible
for general graphs since the probability mass function of the SI

model is intractable. To overcome this barrier, we resort to the

Monte Carlo (MC) method for approximate calculation, with details

in Algorithm 1. This vanilla version turns out to be computationally

inefficient. However, we will introduce techniques to significantly

improve its computation efficiency afterwards.

Remark 2 (Monte Carlo setup). Note that we have two layers

of Monte Carlo evaluations. The first layer is the loss function

calculation in (6) and (7), while the second layer is the p-value

evaluation (8). The first layer shares the same𝑚 samples. This is

different from the classical Monte Carlo, but would not break the

validity for p-value calculation. The properties of p-value calculation

by Monte Carlo method have been studied in detail by [4, 12].

Algorithm 1 Vanilla MC for Confidence Set Construction

1: Input:MC sample number𝑚, confidence level 𝛼

2: Input: Network 𝐺 , data 𝑦, discrepancy function ℓ

3: for each infected node 𝑠 ∈ 𝑦 do
4: Generate 2𝑚 samples 𝑧𝑖 ∈ Z, 𝑖 = 1, · · · , 2𝑚 from the𝑇 -round

diffusion process with source 𝑠 on 𝐺 .

5: Estimate expected loss 𝑇𝑠 (𝑦) of data 𝑦 as

𝑇𝑠 (𝑦) =
1

𝑚

2𝑚∑
𝑖=𝑚+1

ℓ𝑠 (𝑦, 𝑧𝑖 ) . (6)

6: For path 𝑧 𝑗 , 𝑗 = 1, · · · ,𝑚, estimate 𝑇𝑠 (Z (𝑧 𝑗 )) as

𝑇𝑠 (Z (𝑧 𝑗 )) =
1

𝑚

2𝑚∑
𝑖=𝑚+1

ℓ (Z (𝑧 𝑗 ), 𝑧𝑖 ) . (7)

7: Estimate the p-value𝜓𝑠 (𝑦) as

ˆ𝜓𝑠 (𝑦) =
1

𝑚

𝑚∑
𝑗=1

I(𝑇𝑠 (Z (𝑧 𝑗 )) ≥ 𝑇𝑠 (𝑦)). (8)

8: end for
9: return level 1 − 𝛼 confidence set:

C𝛼 (𝑦) = {𝑠 ∈ 𝑉𝐼 : ˆ𝜓𝑠 (𝑦) > 𝛼}.

Remark 3 (Choice of the sample number 𝑚). In theory, the

computation in Algorithm 1 is exact when 𝑚 → ∞. In practice,

simple guidance about the choice of𝑚 can be derived as follows.

The critical step in Algorithm 1 is Step 7 for the p-value calculation

since the MC errors from previous steps are usually in a lower order.

For the correctness, we only need to worry about the evaluation at

node 𝑠∗ when the true p-value is close to 𝛼 . Step 7 averages over𝑚

indicators. By the central limit theorem, the MC estimate at most

misses the true p-value by roughly 2

√
𝛼 (1 − 𝛼)/𝑚. For example,

if we are aiming for a 90% confidence set where 𝛼 = 0.1, setting

𝑚 = 10000 would indicate that the MC at most misses the targeting

confidence level by 0.006%, which is usually good enough in most

applications. In our experiments, we use this𝑚 = 10000 and it has

been sufficient in all situations. Notice that this recommendation is

more conservative than the ones used in classical statistical inference

problems [12]. In our experience, it might still be acceptable to use

a smaller𝑚.

Remark 4 (Time complexity of the vanilla MC, and its trivial
parallelization). The time complexity of a standard sequential

implementation of Algorithm 1 is �̃� (𝑚𝑇 2+𝑚2𝑇 2):3 (1) the first term
is due to theMC sampling [5]; (2) the second term is from the statistic

calculation (7) given the MC samples. However, our algorithm can

be trivially parallelized. In particular, the for-loop in Step 3 can be

3
As a convention, the �̃� notation omits logrithmic terms.
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distributed across different 𝑠 ∈ 𝑉𝑖 with any communication. This

leads to a parallel time complexity �̃� (𝑚𝑇 +𝑚2𝑇 ). It is worthwhile
to compare this time cost with the rumor center of [21] which

has �̃� (𝑑𝑇 ) linear complexity and 𝑑 is the maximum node degree.

But the algorithm has to be sequential (thus non-parallelizable). In

summary, Algorithm 1 has a better dependence on the network

density captured by 𝑑 but has an additional quadratic dependence

on the number of samples𝑚.

3.4 Fast Loss Estimation for the Canonical Family

A major computational bottleneck of Algorithm 1 is the 𝑂 (𝑚2𝑇 )
time for estimating E𝑠 (ℓ (𝑦, 𝑍 )) in Equation (7) for every 𝑗 since we

have to compute
ˆ𝜓 for𝑚 samples, and each

ˆ𝜓 is the average over

another𝑚 samples. Fortunately, it turns out that, for canonical dis-

crepancy family, this step can be done in 𝑂 (𝑚𝑇 ) time, highlighting

another advantage of our proposed family of cost functions.

Instead of computing 𝑇𝑠 in Equation (7) by summing over the

sample 𝑖 = 𝑚 + 1, · · · , 2𝑚, we can compute 𝑇𝑠 directly using only

the “summary information” of these samples that can be computed

and cached in advance. This insight is possible due to the following

alternative representation of the 𝑇𝑠 (𝑦) function in Equation (7):

𝑇𝑠 (𝑦) = − 1

𝑚

∑
𝑣:𝑦𝑣=1

2𝑚∑
𝑖=𝑚+1

𝑇∑
𝑘=1

ℎ(𝑘)I(𝑡𝑧𝑖 (𝑣) = 𝑘)

= − 1

𝑚

∑
𝑣:𝑦𝑣=1

𝑇∑
𝑘=1

𝑀𝑣,𝑘ℎ(𝑘) (9)

where𝑀𝑣,𝑘 counts the total number of samples in 𝑧𝑚+1, · · · , 𝑧2𝑚 in

which node 𝑣 is the 𝑘’th infected node in the infection path. Let𝑀 ∈
R𝑛×𝑇 be the matrix containing the entries𝑀𝑣,𝑘 . Note that, there are

at most𝑚𝑇 nonzero entries in𝑀 since each sample only has𝑇 nodes.

These entries can be computed in 𝑂 (𝑚𝑇 ) time simply by updating

the corresponding 𝑀𝑣,𝑘 entries during sampling. With these non-

zero𝑀𝑣,𝑘 entries, we can then compute
ˆℎ(𝑣) = ∑𝑇

𝑘=1
𝑀𝑣,𝑘ℎ(𝑘) for

all the 𝑣 that showed up in our samples in 𝑂 (𝑚𝑇 ) time. Finally,

given the previous
ˆℎ(𝑣), we can compute any 𝑇𝑠 (𝑦) in 𝑂 (𝑇 ) time

where 𝑦 = Z (𝑧1), · · · , Z (𝑧𝑚), which thus in total takes an additional

𝑂 (𝑚𝑇 ) time. This overall takes 𝑂 (𝑚𝑇 ) time.

4 Monte Carlo Acceleration via Pooled Sampling
In subsection 3.4, we reduced the computation time for estimating a

single p-value to �̃� (𝑚𝑇 ), which is arguably the minimum possible

in our framework since even sampling 𝑚 samples already takes

�̃� (𝑚𝑇 ). In this section, we will introduce efficient strategies to re-

duce another major computational cost in our algorithm – the MC

sampling. Our techniques will “borrow” MC samples of one node

for the inference task of another node by leveraging the network

structure and properties of the SI model. Consequently, we only

need to generate MC samples for a subset of the infected nodes,

which may effectively reduce the computational cost.

4.1 Surjective Importance Sampling for Single-Degree
Nodes

A node with only one connection in the network is called a single-
degree node. Suppose node 𝑢 ∈ 𝑉𝐼 is a single degree node with the

only neighbor 𝑣0 that is also infected. Since any diffusion process

starting from 𝑢 must pass 𝑣0, we can then use the distribution of

paths from 𝑣0 to infer the distribution of paths from 𝑢. However,

the converse is not true — a diffusion path from 𝑣0 may not pass

𝑢, and even if it passes 𝑢, this may not occur as the first infection.

Therefore, certain mapping is needed to connect the two diffusion

processes. The following theorem formulates this intuition.

Theorem 2. Let 𝑢 be a single-degree node in the graph 𝐺 with the
only neighbor node 𝑣0. If a path 𝑧 ∈ Z𝑇 starting from 𝑣0 contains 𝑢

𝑧 = {𝑣0, 𝑠1, 𝑠2, · · · , 𝑠𝐾−1, 𝑢, 𝑠𝐾+1, · · · , 𝑠𝑇 },
define 𝑧’s matching path from 𝑢 as

𝑓𝑢 (𝑧) = {𝑢, 𝑣0, 𝑠1, · · · , 𝑠𝐾−1, 𝑠𝐾+1, · · · , 𝑠𝑇 }. (10)

In this case, the likelihood ratio between 𝑧 and 𝑓𝑢 (𝑧) is
𝑝 (𝑓𝑢 (𝑧) |𝑢)
𝑝 (𝑧 |𝑣0)

=
1

P (𝑢 |𝑣0, 𝑠1 · · · 𝑠𝐾−1)

× 1∏𝐾−1
𝑘=1

(1 − P (𝑠𝑘 |𝑣0, 𝑠1 · · · 𝑠𝑘−1))
(11)

If the path 𝑧 from 𝑣0 that does not contain 𝑢, we define the ratio
𝑝 (𝑓𝑢 (𝑧) |𝑢)/𝑝 (𝑧 |𝑣0) to be 0.

Notice that all terms on the right-hand side of (11) are available

when we sample a path from the diffusion process starting at 𝑣0,

thus given a sampled path 𝑧, computing the likelihood ratio only

introduces negligible computational cost. Intuitively, according to

Theorem 2, when the MC samples of 𝑣0 are available, they can be

used to compute the p-value for node 𝑢 based on a similar idea to

importance sampling [17]. However, the regular importance sam-

pling cannot be directly applied because the likelihood ratio is only

available between 𝑧 and 𝑓𝑢 (𝑧) under the mapping of 𝑓𝑢 . Therefore,

we need a generalized version of the importance sampling. We name

this procedure the surjective importance sampling and give its prop-

erty in the following theorem. We believe that this theorem could

be of general interest beyond our context.

Theorem 3 (Surjective Importance Sampling). Suppose 𝑝1 and 𝑝2
are two probability mass functions for discrete random vector𝑍 defined
on C1 and C2. Let E1 and E2 denote the expectation with respect to
𝑝1 and 𝑝2, respectively. Given surjection 𝜙 : C′

1
→ C2, defined on a

subset C′
1
⊂ C1, we define the inverse mapping by 𝜙−1 (𝑧) = {𝑧 ∈

C′
1
: 𝜙 (𝑧) = 𝑧} for any 𝑧 ∈ C2. For a given bounded real function of

interest, 𝑔, define

[ = E2 [𝑔(𝑍 )] and [̂ =
1

𝑚

𝑚∑
𝑖=1

𝑔(𝜙 (𝑍𝑖 ))
|𝜙−1 (𝜙 (𝑍𝑖 )) |

𝑝2 (𝜙 (𝑍𝑖 ))
𝑝1 (𝑍𝑖 )

where 𝑍1, 𝑍2, · · · , 𝑍𝑚 is a size-𝑚 i.i.d. sample from distribution 𝑝1,
and if 𝑍𝑖 ∉ C′

1
, we define 𝑝2 (𝜙 (𝑍𝑖 )) = 0. We have

lim

𝑚→∞
[̂ = [ a.s.

Notice that the standard importance sampling is a special case

of Theorem 3 when 𝜙 is the identity mapping. Theorem 2 and
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3 toghether would serve as a cornerstone for our use of the MC

samples from 𝑣0 to make inference of 𝑢.

Corollary 1. For a single degree node 𝑢 and its neighbor 𝑣0, let
𝑧𝑖 , 𝑖 = 1, · · · ,𝑚 be the 𝑚 i.i.d. paths generated from the diffusion
process with source 𝑣0. For any bounded function 𝑔, we have

lim

𝑚→∞
1

𝑚

𝑚∑
𝑖=1

𝑔 (𝑓𝑢 (𝑧𝑖 ))
P (𝑓𝑢 (𝑧𝑖 ) |𝑢)
P (𝑧𝑖 |𝑣0)

1

𝑇
= E𝑢 [𝑔(𝑍 )] a.s.

in which 𝑓𝑢 (𝑧𝑖 ) and the likelihood ratio is given by Theorem 2.

Based on Corollary 1, when 𝑔(𝑧) = ℓ (𝑦, 𝑧) or 𝑔(𝑧) = I(𝑇𝑢 (Z (𝑧)) ≥
𝑇𝑢 (𝑦)), E[𝑔] corresponds to the test statistic 𝑇𝑢 (𝑦) or the p-value
𝜓𝑢 (𝑦). Consequently, the MC sampling for𝑢 can be avoided. Instead,

to find the p-value for𝑢, Equation (7) in Algorithm 1 can be replaced

by 𝑇𝑢
(
Z
(
𝑓𝑢

(
𝑧 𝑗
) ) )

equalling the following

1

𝑚

2𝑚∑
𝑖=𝑚+1

ℓ
(
Z
(
𝑓𝑢

(
𝑧 𝑗
) )
, 𝑓𝑢 (𝑧𝑖 )

) P (𝑓𝑢 (𝑧𝑖 ) |𝑢)
P (𝑧𝑖 |𝑣0)

1

𝑇

and Equation (8) can be replaced by
ˆ𝜓𝑢 (𝑦) equalling the following

1

𝑚

𝑚∑
𝑖=1

I

(
𝑇𝑢

(
Z
(
𝑓𝑢 (𝑧 𝑗 )

) )
≥ 𝑇𝑢 (𝑦)

)
P (𝑓𝑢 (𝑧𝑖 ) |𝑢)
P (𝑧𝑖 |𝑣0)

1

𝑇
,

where 𝑧 𝑗 , 𝑗 = 1, · · · , 2𝑚 are the MC samples generated from 𝑣0.

The same operation can be used for 𝑇𝑢 (𝑦)). The computational

strategy for canonical discrepancy functions can also be extended

in this setting (see Appendix C).

4.2 Permuted Sampling for Isomorphic Nodes
When the network structure is in some sense “symmetric" for two

nodes, the inference properties of theMC samples from one node can

be viewed as stochastically equivalent to the MC samples from the

other node after the symmetric reflection. We call such a property

isomorphism. Denote the node 𝑢’s 𝑘th order neighborhood– the set

of all nodes (exactly) 𝑘 hops away from 𝑢– by 𝑁𝑘 (𝑢). The following
definition for isomorphism rigorously formulates the aforemen-

tioned idea.

Definition 4. Any two nodes 𝑢, 𝑣 in a network are first-order iso-
morphic if there exists a permutation𝜋 : {1, 2, · · · , 𝑛} → {1, 2, · · · , 𝑛},
such that: (1) 𝜋 (𝑢) = 𝑣 ; (2) 𝜋 (𝑖) = 𝑖, if 𝑖 ∉ {𝑢, 𝑣} ∪ 𝑁1 (𝑢) ∪ 𝑁1 (𝑣); (3)
𝐴 = 𝐴�̃�,�̃� , where𝐴�̃�,�̃� is the resulting matrix by applying permutation
𝜋 on the rows and columns of 𝐴 simultaneously.

For illustration, consider a simplified case of the isomorphism

where 𝑢 and 𝑣 have exactly the same connections. In this case, 𝜋

only swaps 𝑢 and 𝑣 and remains the identity mapping for all other

nodes. For this pair of 𝑢, 𝑣 , the diffusion process properties would

be the same if we swap the positions of 𝑢 and 𝑣 . Definition 4 is more

general than the above simplified case as it allows permutation to

the first-order neighbors. Under this definition of isomorphism, the

following theorem shows that we can use the MC samples from one

node to make inference of its isomorphic nodes after applying the

permutation.

Theorem 4. If 𝑢 and 𝑣 are first-order isomorphic under the permu-
tation 𝜋 . If 𝑍 = {𝑢, 𝑣1, 𝑣2, · · · , 𝑣𝑇−1} is a random diffusion path from

source 𝑢. Define the permuted path

𝑍𝜋 = {𝜋 (𝑢), 𝜋 (𝑣1), · · · , 𝜋 (𝑣𝑇−1)}.
Then 𝑍𝜋 has the same distribution as a random diffusion path from
source 𝑣 .

To use the MC samples of one node to its isomorphic nodes

according to Theorem 4, we need an efficient algorithm to identify

all isomorphic pairs and the corresponding permutations. Directly

checking Definition 4 is costly. To speed up the computation, we

identify necessary conditions for isomorphism in Proposition 2.

Proposition 2. If 𝑢 and 𝑣 are first-order isomorphic, we must have
𝑑𝑢 = 𝑑𝑣 and 𝐷1 (𝑢) = 𝐷1 (𝑣) where 𝑑𝑢 and 𝑑𝑣 are the degrees of 𝑢 and
𝑣 ,𝐷1 (𝑢) and𝐷2 (𝑣) are the degree sequence (sorted in ascending order)
of 𝑁1 (𝑢) and 𝑁1 (𝑣). Furthermore, 𝑢 and 𝑣 have the same second-order
neighbor sets. That is, 𝑁2 (𝑢) = 𝑁2 (𝑣).

Based on Proposition 2 we can efficiently identify isomorphism

using pre-screening steps. This turns out to significantly speed up

our computation. Details of the algorithm are described by Algo-

rithm 2 in Appendix B. With the isomorphic relations available, we

can partition the nodes into isomorphic groups. Then MC sampling

is only needed for one node in each group, and the MC samples

can be shared within the group according to Theorem 4. Specifi-

cally, suppose 𝑍1, · · ·𝑍2𝑚 are sampled from the diffusion process

from 𝑢. If 𝑢 and 𝑣 are isomorphic with permutation 𝜋 , we can use

(𝑍1)𝜋 , (𝑍2)𝜋 , · · · , (𝑍2𝑚)𝜋 as the MC samples of 𝑣 in Algorithm 1.

Remark 5. Definition 4 can be extended to higher-order neighbor-

hoods, identifying more isomorphic pairs. However, the complexity

of identifying such pairs increases exponentially with the order of

neighbors, which may overwhelm the saved time on the MC side.

The first-order isomorphism turns out to give the most desirable

tradeoff in terms of computational efficiency.

5 Experimental Studies
In this section, we evaluate our proposed methods on well-studied

random network models. We generate networks from three random

networkmodels: random 4-regular trees, the preferential attachment

model [3] and the small-world (S-W) networkmodel [26]. In network

science, the preferential attachment model is usually used to model

the scale-free property of networks that is conjectured by many as

ubiquity in real-world networks [2]. The small-world property is

believed to be prevalent in social networks [26]. The network size

is 𝑁 = 1365 (the size of regular tree with degree 4 and depth 6). The

networks are sparse, with an average degree below 4. The Monte

Carlo size𝑚 is 10000. Source nodes are randomly sampled, and the

reported results are an averaged across 100 replications. All source

code of this paper can be found in hyperlink https://github.com/lab-

sigma/Diffusion-Source-Identification.

5.1 Confidence validity evaluation
First, we set the infection size𝑇 = 150. We start with evaluating the

performance of the single-point source estimation accuracy from

the rumor center and distance center of [6, 14, 21, 28], as well as

estimator using our proposed frameworkwith discrepancy functions

ℓ𝑠𝑒 and ADiT. The result is shown in the Table 1. Though the two
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Fig. 2. The average size of confidence sets for different confidence levels.

estimators based on our framework are better, the overall message

from the table is not promising. All of the methods, including ours,

give poor accuracy that is too low to be useful in applications. Such a

negative result convincingly shows that the DSI problem is generally

too difficult for the single-point estimation strategy to work, and

exploring the alternative confidence set inference is necessary.

Table 1. The correct rate of single-point estimation methods across 200
replications.

reg. tree Pref. Att. S-W

Rumor center 0 0 0.004

Dist. center 0 0 0

Euclidean (ours) 0 0 0.099

ADiT (ours) 0 0 0.128

Table 2 shows the coverage rate of the confidence sets, with

the squared Euclidean distance and the ADiT as the discrepancy

functions. Notably, the proposed confidence set procedure delivers

the desired coverage (up to the simulation error). Meanwhile, the

size of the confidence set varies substantially depending on the

network structure. For regular trees and scale-free networks, the

ADiTworks much better than the Euclidean distance, indicating that

the diffusion order is informative in this type of network structure.

For the small-world networks, the two are very similar. This may

indicate that for well-connected networks, the diffusion order is

less informative. In general, we believe the adaptivity of the ADiT-

based confidence set is always preferable.

To obtain a comprehensive view of the tradeoff between the set

size and confidence level, we show the relationship between the

confidence set’s average size and the confidence level in Figure 2.

The relation is slightly sup-linear. In connection with the single-

point estimation results, notice that for small-world networks, the

confidence set with a confidence level 20% has average size of around

Table 2. The average coverage rate of the confidence sets across 200 replica-
tions. The standard error for the coverage rate is about 3% and 4% for 90%
and 80% confidence sets, respectively.

reg. tree Pref. Att. S-W

Euclidean-90% 90.4% 90.8% 90.2%

size 74.9 81.2 14.3

ADiT-90% 86.2% 90.7% 91.5%

size 56.9 64.8 16.2

Euclidean-80% 84% 82% 81.1%

size 50.0 57.5 10.2

ADiT-80% 77.4% 82.7% 79.9%

size 47.5 51.0 9.2

Table 3. The timing comparison of the sequential running time for the
proposed pooled MC strategies (in sec.).

reg. tree Pref. Att. S-W

Vanilla MC 2606 3129 3209

Import. Sampl. 1679 1730 3253

Isomorphism 1657 1988 3138

Both 1219 1360 3114

1. In contrast, the regular tree and preferential attachment network

are more difficult, and to guarantee at 10%, the average size of

the confidence set is already about 5. These observations verify

the results in Table 1 and support our argument that, in general,

inferring the source by a single-point estimator is hopeless. Figure 3

shows the variation of the size with respect to𝑇 . It can be seen that

the size, within the current range, follows a roughly linear trend

with𝑇 . Again, though the ADiT is slightly worse than the Euclidean

loss in small-world networks, the difference is negligible. In the

other two settings, the improvement of ADiT is significant.

5.2 Computational Improvement by the pooled MC
Finally, we also evaluate the timing improvements achieved by

the pooled MC strategies. The power of the pooled MC strategies

depends on network structures, as expected. The timing comparison

for the pooled MC strategies is included in Table 3. The timing

included is only the sequential version of our method for a fair

comparison with the rumor center. As can be seen, with both of the

pooled MC strategies used, we can reduce the timing by about 60%

for tree structure and the preferential attachment networks, but the

effects on small-world networks are negligible.

Meanwhile, notice that our inference procedure can be paral-

lelized. We give a parallel algorithm in the Appendix section (see

Algorithm 3 in Appendix D). It needs MC sampling for only one

node in each group, and the calculations for other nodes can be done

using pooled MC methods. Table 4 includes the timing results of

the parallel version implementation based on 20 cores in the same

settings as Table 3. With 20 cores, the time needed for a confidence

set construction is around 1 minute for cases when the pooled MC

methods are effective. For reference, the average timing for finding

the rumor center is about 2 seconds. However, with the extra com-

putational cost, our method provides confidence sets at all specified
levels within one run, with guaranteed accuracy for any network

structures. We believe it is generally a wise tradeoff.

To obtain a better sense of its practical effectiveness, we also

evaluate the timing improvement brought by the pooled MC on

real-world network structures. In particular, we take 381 network

7
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Fig. 3. The average size of 90% confidence sets for𝑇 values.

Table 4. Comparison of the parallel running time for the proposed pooled
MC strategies (in sec.) on 20 cores.

reg. tree Pref. Att. S-W

Vanilla MC 150.8 176.0 184.9

Import. Sampl. 116.7 96.1 185.9

Isomorphism 111.0 130.3 184.3

Both 60.4 76.5 183.4

data studied in [9] from 6 domains (biological, economic, infor-

mational, social, technological and transportation networks). The

pooled MC can give more than 40% computational improvement on

economic and social networks, and deliver 10% to 20% improvement

on biological and informational networks. Details can be found in

Appendix E.

6 Summary
We have introduced a statistical inference framework for diffusion

source identification on networks. Compared with previous meth-

ods, our framework is more general and renders salient insights

about the problem. More importantly, within this framework, we

can construct the confidence set for the source node in a more natu-

ral and principled way such that the success rate can be guaranteed

on any network structure. To our knowledge, our method is the

first DSI method with theoretical guarantees for general network

structures. We also propose efficient computational strategies that

are potentially useful in other problems as well.
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Appendix to “Diffusion Source Identification on Networks with Statistical Confidence"
Quinlan Dawkins, Tianxi Li and Haifeng Xu

A Proofs

A.1 Proof of Proposition 1
Both the two claims are straightforward to show by using the definition. First, we have

E𝑠 ℓ𝑟𝑐 (𝑦, 𝑧) = 1 − EI(𝑦 = Z (𝑧)) = 1 − P𝑠 (Z (𝑍 ) = 𝑦) .
So minimizing the loss is equivalent to the MLE, which is equivalent to the rumor center in infinite regular trees.

Secondly, notice that that both 𝑦 and Z (𝑍 ) are 𝑛 dimensional binary vectors. So

∥𝑦 − Z (𝑍 )∥2
2
=
∑
𝑖

𝐼 (𝑦𝑖 ≠ Z (𝑍 )𝑖 )

which is the symmetric difference between the set {𝑖 : 𝑦𝑖 = 1} and {𝑖 : Z (𝑍 )𝑖 = 1}.

A.2 Proof of Theorem 1
Define 𝑞𝛼

𝑇,𝑠∗ = inf𝑡 {𝑡 : P𝑠∗ (𝑇𝑠∗ (Z (𝑍 )) ≥ 𝑡) ≤ 𝛼}. Notice that 𝑞𝛼
𝑇,𝑠∗ can be seen as one generalized definition for the right quantile of the

distribution of the random variable 𝑇𝑠∗ (�̃� ), where �̃� := Z (𝑍 ) is a random infection status of the network generated by the diffusion process

starting from 𝑠∗.
Now assume 𝑌 is a random infection status from the diffusion process from 𝑠∗. According to the definition of the p-value, we have

P𝑠∗
(
𝑠∗ ∈ 𝑆 (𝑌 )

)
= P𝑠∗ (𝜓𝑠∗ (𝑌 ) > 𝛼)

= P𝑠∗
(
P𝑠∗

(
𝑇𝑠∗ (�̃� ) ≥ 𝑇𝑠∗ (𝑌 )

)
> 𝛼

)
≥ P𝑠∗

(
𝑇𝑠∗ (𝑌 ) < 𝑞𝛼𝑇,𝑠∗

)
= 1 − P𝑠∗

(
𝑇𝑠∗ (𝑌 ) ≥ 𝑞𝛼𝑇,𝑠∗

)
.

Note that since 𝑠∗ is the true source node, 𝑇𝑠∗ (𝑌 ) and 𝑇𝑠∗ (�̃� ) are following exactly the same distribution, thus

P𝑠∗
(
𝑠∗ ∈ 𝑆 (𝑌 )

)
≥ 1 − P𝑠∗

(
𝑇𝑠∗ (𝑌 ) ≥ 𝑞𝛼𝑇,𝑠∗

)
≥ 1 − 𝛼.

A.3 Proof of Theorem 2
Given a path generated by the diffusion process starting from 𝑣0 containing 𝑢, denoted by

𝑧 = {𝑣0, 𝑠1, 𝑠2, · · · , 𝑠𝐾−1, 𝑢, 𝑠𝐾+1, · · · , 𝑠𝑇 },
we match it to the path 𝑓𝑢 (𝑍 ) defined as

𝑓𝑢 (𝑧) = {𝑢, 𝑣0, 𝑠1, · · · , 𝑠𝐾−1, 𝑠𝐾+1, · · · , 𝑠𝑇 }.
We start from the probability mass of 𝑧 starting from 𝑣0. By using the Markov property, we have

𝑝 (𝑧 |𝑣0) =P(𝑠1 |𝑣0)P(𝑠2 |𝑣0, 𝑠1) · · · P(𝑠𝐾−1 |𝑣0, 𝑠1, · · · , 𝑠𝐾−2)
× P(𝑠𝐾+1 |𝑣0, · · · , 𝑢) · · · P(𝑠𝑇 |𝑣0, · · · , 𝑠𝑇−1) (12)

× P(𝑢 |𝑣0, 𝑠1, · · · , 𝑠𝐾−1)
In contrast, for the path 𝑓𝑢 (𝑧), we have

P(𝑓𝑢 (𝑧) |𝑢) =P(𝑣0 |𝑢)P(𝑠1 |𝑢, 𝑣0)P(𝑠2 |𝑢, 𝑣0, 𝑠1) · · · P(𝑠𝐾−1 |𝑢, 𝑣0, 𝑠1, · · · , 𝑠𝐾−2)
× P(𝑠𝐾+1 |𝑢, 𝑣0, · · · , 𝑠𝐾−1) · · · P(𝑠𝑇 |𝑢, 𝑣0, · · · , 𝑠𝑇−1)

=P(𝑠1 |𝑢, 𝑣0)P(𝑠2 |𝑢, 𝑣0, 𝑠1) · · · P(𝑠𝐾−1 |𝑢, 𝑣0, 𝑠1, · · · , 𝑠𝐾−2)
× P(𝑠𝐾+1 |𝑢, 𝑣0, · · · , 𝑠𝐾−1) · · · P(𝑠𝑇 |𝑢, 𝑣0, · · · , 𝑠𝑇−1) . (13)

Notice that the conditional probability P(𝑠𝑘+1 |𝑣0, · · · , 𝑢, 𝑠𝐾+1, · · · 𝑠𝑘 ), 𝑘 > 𝐾 only depends on the infection status before the 𝑘th infection

and is invariant to the infection order. This property indicates that all terms after the 𝐾 + 1th (in the second rows) of (12) and (13) are equal.

Next, we compare the terms in the first line in each of (12) and (13). Notice that for each 𝑘 < 𝐾 , the term P(𝑠𝑘 |𝑣0, 𝑠1, · · · , 𝑠𝑘−1) is identical
for each available connections given the infected nodes 𝑣0, 𝑠1, · · · , 𝑠𝑘−1 while the term P(𝑠𝑘 |𝑢, 𝑣0, 𝑠1, · · · , 𝑠𝑘−1) is identical on all available

edges given the infected nodes 𝑢, 𝑣0, 𝑠1, · · · , 𝑠𝑘−1. The only difference in the two infected sets is on 𝑢. Since 𝑢 has only one connection to 𝑣0, at
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each point, the number of available infecting edges is one more in the former case. Therefore, we have

P(𝑠𝑘 |𝑢, 𝑣0, 𝑠1, · · · , 𝑠𝑘−1) =
1

1 − P(𝑠𝑘 |𝑣0, 𝑠1, · · · , 𝑠𝑘−1)
P(𝑠𝑘 |𝑣0, 𝑠1, · · · , 𝑠𝑘−1), 𝑘 < 𝐾.

In addition, notice that in the third line of (12), there is one extra term that does not appear in (13). Combining the aforementioned three

relations, we final obtain probability mass factor to be

P(𝑓𝑢 (𝜋) |𝑆0 = 𝑢)
P(𝜋 |𝑆0 = 𝑣0)

=
1

(1 − P(𝑠1 |𝑣0)) (1 − P(𝑠2 |𝑣0, 𝑠1)) · · · (1 − P(𝑠𝐾−1 |𝑣0, 𝑠1, · · · , 𝑠𝐾−2))P(𝑢 |𝑣0, 𝑠1, · · · , 𝑠𝐾−1)
(14)

Moreover, if 𝑧 does not contain 𝑢, we set the ratio to be 0.

A.4 Proof of Theorem 3
Since 𝑍𝑖 ’s are a random sample from 𝑝1, under the current assumption, by the strong law of large numbers, we have

P

(
[̂ → E1 [

𝑔(𝜙 (𝑍 ))
|𝜙−1 (𝜙 (𝑍 )) |

𝑝2 (𝜙 (𝑍 ))
𝑝1 (𝑍 )

]
)
= 1.

Notice that 𝜙 is a surjection. Therefore, the term E1 [ 𝑔 (𝜙 (𝑍 ))
|𝜙−1 (𝜙 (𝑍 )) |

𝑝2 (𝜙 (𝑍 ))
𝑝1 (𝑍 ) ] can be rewritten as

E1 [
𝑔(𝜙 (𝑍 ))

|𝜙−1 (𝜙 (𝑍 )) |
𝑝2 (𝜙 (𝑍 ))
𝑝1 (𝑍 )

] =
∑
𝑧∈C1

𝑔(𝜙 (𝑧))
|𝜙−1 (𝜙 (𝑧)) |

𝑝2 (𝜙 (𝑧))
𝑝1 (𝑧)

𝑝1 (𝑧)

=
∑
𝑧∈C1

𝑔(𝜙 (𝑧))
|𝜙−1 (𝜙 (𝑧)) |

𝑝2 (𝜙 (𝑧))

=
∑
𝑧∈C′

1

𝑔(𝜙 (𝑧))
|𝜙−1 (𝜙 (𝑧)) |

𝑝2 (𝜙 (𝑧)) +
∑

𝑧∈C1/C′
1

𝑔(𝜙 (𝑧))
|𝜙−1 (𝜙 (𝑧)) |

𝑝2 (𝜙 (𝑧))

=
∑
𝑧∈C′

1

𝑔(𝜙 (𝑧))
|𝜙−1 (𝜙 (𝑧)) |

𝑝2 (𝜙 (𝑧))

=
∑
𝑧∈C2

∑
𝑧:𝜙 (𝑧)=𝑧

𝑔(𝜙 (𝑧))
|𝜙−1 (𝜙 (𝑧)) |

𝑝2 (𝜙 (𝑧))

=
∑
𝑧∈C2

∑
𝑧:𝜙 (𝑧)=𝑧

𝑔(𝑧)
|𝜙−1 (𝑧) |

𝑝2 (𝑧)

=
∑
𝑧∈C2

∑
𝑧∈𝜙−1 (𝑧)

𝑔(𝑧)
|𝜙−1 (𝑧) |

𝑝2 (𝑧)

=
∑
𝑧∈C2

|𝜙−1 (𝑧) | 𝑔(𝑧)
|𝜙−1 (𝑧) |

𝑝2 (𝑧)

=
∑
𝑧∈C2

𝑔(𝑧)𝑝2 (𝑧)

= E2 [𝑔(𝑍 )] .

A.5 Proof of Corollary 1

We will use 𝑓𝑢 (𝑧) in place of 𝜙 to apply Theorem 3. The only remaining step is to find |𝑓𝑢 (𝑓 −1𝑢 (𝑧)) |. By the definition of 𝑓𝑢 in Theorem 3, it

is easy to see that the other 𝑇 − 1 nodes (except 𝑢 and 𝑣0) and their order uniquely determine to the mapped path. Therefore, |𝑓𝑢 (𝑓 −1𝑢 (𝑧)) |
would always be 𝑇 in this situation.

A.6 Proof of Theorem 4
Notice that, given 𝑇 , the probability mass function of a diffusion path only depends on the network 𝐴 and the source node. Condition 1 of

Definition 4 indicates that 𝑍𝜋 starts from 𝑣 . Condition 2 and condition 3 of Definition 4 together indicate that 𝑍𝜋 is also a valid diffusion path.

Condition 3, in particular, indicates that

𝑝𝑢 (𝑍 ) = 𝑝𝑣 (𝑍𝜋 ).
Now define can define 𝜋−1 to be the inverse of 𝜋 . For any 𝑍 from 𝑣 , for the same reason, 𝑍𝜋−1 is also a valid diffusion path starting from 𝑢. In

particular, we have 𝑍 = (𝑍𝜋 )𝜋−1 . Therefore, 𝑍𝜋 has the same sample space and probability mass function as the random diffusion path from 𝑣 .
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B Details for Isomorphism Identification in Section 4.2

Algorithm 2 Identification of First-Order Isomorphic Pairs

Input: Graph 𝐺 = (𝑉 , 𝐸)
Initialize 𝐿 = ∅ to store the list of isomorphic node pairs

for every node 𝑢 ∈ 𝑉 do
Compute 𝑁1−4 (𝑢) as the set of all neighbors of 𝑢 within 4 hops

// 𝑁1−4 (𝑢) includes all nodes that are possible to be isomorphic to 𝑢

for 𝑣 ∈ 𝑁1−4 (𝑢) do
if 𝑑𝑣 == 𝑑𝑢 then

Compute 𝐷1 (𝑢) = {𝑑𝑢′ : 𝑢 ′ ∈ 𝑁1 (𝑢)}, the multi-set of degrees of nodes in 𝑁1 (𝑢)
Similarly, compute 𝐷1 (𝑣), the multi-set of degrees of all one-hop neighbors of 𝑣

if 𝐷1 (𝑢) == 𝐷1 (𝑣) then
Compute �̃�2 (𝑢) = 𝑁2 (𝑢) − 𝑁1 (𝑢) − 𝑁1 (𝑣) − {𝑢, 𝑣}

// �̃�2 (𝑢) contains all (exactly) two-hop neighbors of 𝑢, but with all (exactly) one-hop neighbors of 𝑢, 𝑣
removed
Compute �̃�2 (𝑣) = 𝑁2 (𝑣) − 𝑁1 (𝑢) − 𝑁1 (𝑣) − {𝑢, 𝑣}
if �̃�2 (𝑢) == �̃�2 (𝑣) then

Do exhaustive search to check whether 𝑢, 𝑣 are isomorphic by enumerating all possible matchings of their neighbors under the

constraints of �̃�2 (𝑢) and the matching 𝐷1 (𝑢), 𝐷1 (𝑣), and if so, add (𝑢, 𝑣) to list 𝐿

// Usually, not many pairs need to go through this step
end if

end if
end if

end for
end for

Based on the properties in Proposition 2, Algorithm 2 finds all isomorphic pairs and the permutations in the network. Next, we provide a

proof of Proposition 2.

Proof of Proposition 2. 𝑑𝑢 = 𝑑𝑣 because 𝜋 gives a 1-1 mapping from 𝑁1 (𝑢) to 𝑁1 (𝑣). Furthermore, we have 𝜋 (𝑁1 (𝑢)) = 𝑁1 (𝑣). By
condition 3 of Definition 4, we also have 𝐷1 (𝑢) = 𝐷1 (𝑣).

For the last one, we can prove by contradiction. Suppose there exists a node𝑤 , such that𝑤 ∈ 𝑁2 (𝑢) but𝑤 ∉ 𝑁2 (𝑣). Since 𝜋 (𝑁1 (𝑢)) = 𝑁1 (𝑣)
while 𝜋 (𝑤) = 𝑤 , so after applying the permutation to the network, we have 𝜋 (𝑤) disconnected from 𝜋 (𝑁1 (𝑤)). This contradicts condition 3

of Definition 4. □

C Loss Function Computation Acceleration for Surjective Importance Sampling
The calculation strategy for canonical discrepancy functions can also be further generalized to the weighted averaging scenario used for the

single-degree nodes in Section 4.1. Specifically, there we need to calculate terms like

1

𝑚

2𝑚∑
𝑖=𝑚+1

ℓ (𝑦, 𝑓𝑢 (𝑧𝑖 ))
P (𝑓𝑢 (𝑧𝑖 ) |𝑢)
P (𝑧𝑖 |𝑣0)

1

𝑇
= − 1

𝑚

2𝑚∑
𝑖=𝑚+1

∑
𝑣:𝑦𝑣=1

I(𝑣 ∈ 𝑓𝑢 (𝑧𝑖 ))ℎ(𝑡𝑓𝑢 (𝑧𝑖 ) (𝑣))
P (𝑓𝑢 (𝑧𝑖 ) |𝑢)
P (𝑧𝑖 |𝑣0)

1

𝑇

= − 1

𝑚

∑
𝑣:𝑦𝑣=1

2𝑚∑
𝑖=𝑚+1

I(𝑣 ∈ 𝑓𝑢 (𝑧𝑖 ))ℎ(𝑡𝑓𝑢 (𝑧𝑖 ) (𝑣))
P (𝑓𝑢 (𝑧𝑖 ) |𝑢)
P (𝑧𝑖 |𝑣0)

1

𝑇

= − 1

𝑚

∑
𝑣:𝑦𝑣=1

2𝑚∑
𝑖=𝑚+1

I(𝑣 ∈ 𝑓𝑢 (𝑧𝑖 )) [
𝑇∑
𝑘=1

I(𝑡𝑓𝑢 (𝑧𝑖 ) (𝑣) = 𝑘)ℎ(𝑘)]
P (𝑓𝑢 (𝑧𝑖 ) |𝑢)
P (𝑧𝑖 |𝑣0)

1

𝑇

= − 1

𝑚

∑
𝑣:𝑦𝑣=1

2𝑚∑
𝑖=𝑚+1

𝑇∑
𝑘=1

I(𝑣 ∈ 𝑓𝑢 (𝑧𝑖 ))I(𝑡𝑓𝑢 (𝑧𝑖 ) (𝑣) = 𝑘)ℎ(𝑘)
P (𝑓𝑢 (𝑧𝑖 ) |𝑢)
P (𝑧𝑖 |𝑣0)

1

𝑇

= − 1

𝑚

∑
𝑣:𝑦𝑣=1

𝑇∑
𝑘=1

ℎ(𝑘) [
2𝑚∑

𝑖=𝑚+1
I(𝑡𝑓𝑢 (𝑧𝑖 ) (𝑣) = 𝑘)

P (𝑓𝑢 (𝑧𝑖 ) |𝑢)
P (𝑧𝑖 |𝑣0)

1

𝑇
] .
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Therefore, to use this strategy in Section 4.1, when general MC samples from 𝑣0, in addition to caching𝑀 , we also want to cache the matrix

adjusted by the factor

𝑀
(𝑣0→𝑢)
𝑣,𝑘

=

2𝑚∑
𝑖=𝑚+1

I(𝑡𝑓𝑢 (𝑧𝑖 ) (𝑣) = 𝑘)
P (𝑓𝑢 (𝑧𝑖 ) |𝑢)
P (𝑧𝑖 |𝑣0)

1

𝑇
.

D Parallel Algorithm for Confidence Set Construction
As discussed in Section 3.3, our confidence set construction algorithm can be implemented in parallel, further boosting its speed. In the main

paper, we only include the details and timing for the sequential version. The parallelized algorithm is described in Algorithm 3.

Algorithm 3 Parallel Confidence Set Construction

1: Input:MC sample number𝑚, confidence level 𝛼 , Network 𝐺 , data 𝑦, discrepancy function ℓ

2: Compute 𝑆 = {𝑔1, 𝑔2, · · · , 𝑔𝑀 }, the isomorphic groups for infected nodes with degree at least 2.

3: for each 𝑔 ∈ 𝑆 do
4: Extend 𝑔 by including all of its single-degree neighbor.

5: end for
6: for each infected isomorphic group 𝑔 ∈ 𝑆 in parallel do
7: Select any 𝑠 ∈ 𝑔 with degree at least 2

8: Generate 2𝑚 samples 𝑧𝑖 ∈ Z, 𝑖 = 1, · · · , 2𝑚 from the 𝑇 -step diffusion process from source 𝑠 .

9: Calculate the p-value for 𝑠 following (6), (7), and (8)

10: for each 𝑣 ∈ 𝑔 that is isomorphic to 𝑠 do
11: Calculate

ˆ𝜓𝑣 (𝑦) according to Theorem 4.

12: end for
13: for each single-degree node 𝑣 ∈ 𝑔 do
14: Calculate the p-value

ˆ𝜓𝑣 (𝑦) according to the surjective importance sampling in Section 4.1.

15: end for
16: end for
17: return the level 1 − 𝛼 confidence set:

C𝛼 (𝑦) = {𝑠 ∈ 𝑉𝐼 : ˆ𝜓𝑠 (𝑦) > 𝛼}.

As can be seen, Algorithm 3 needs MC sampling for only one node in each group, and the calculations for other nodes can be done using

pooled MC methods. When additional cores are available, the for-loops in the algorithm can be further parallelized.

E Evaluation on 381 real-world networks
The data set from Ghasemian et al. [9] contains 550 networks. We focus on 381 networks with more than 200 nodes for stable evaluation. The

removed ones are either too small or have certain pathological structures to stable computation. The 381 networks are from six domains (71

biological, 110 economic, 9 informational, 105 social, 56 technological, and 30 transportation networks).

Though there are no real diffusion labels observed on these networks, we can generate a synthetic diffusion process based on our model.

We generate a diffusion process with 𝑇 = min(0.2𝑁, 150). By doing this, we can evaluate the confidence set properties on these networks and

the timing. The average coverage probability of the 90% confidence set and the relative size of |C|/𝑇 are shown in Table 5. The results match

what we observed previously on the simulated networks, and the ADiT is more effective than the Euclidean loss, indicating the valid method

on the real-world network. More importantly, we also evaluate the timing improvement based on the pooled MC methods. We calculate the

improvement percentage of the pooled MC strategies (over the vanilla MC) on each network. The results are summarized in Figure 4. As

can be seen, the pooled MC is very effective on economic networks and social networks, resulting in an average improvement of 40%. It is

moderately effective on biological and informational networks with 10%-20% improvement. The technological networks and transportation

networks are suitable structures for the strategy. The economic, social, and biological networks are the three largest domains in the data set.

These results demonstrate the pooled MC’s potential as a general computational strategy.

Table 5. The average coverage rate of the 90% confidence sets and the relative size |C |/𝑇 on the 381 real-world networks.

Biological Economic Informational Social Technological Transportation

Euclidean-90% 90.0% 90.1% 88.9% 89.8% 89.1% 90.9%

|C |/𝑇 0.60 0.41 0.66 0.44 0.57 0.38

ADiT-90% 90.2% 89.9% 87.6% 89.3% 89.3% 90.1%

|C |/𝑇 0.55 0.36 0.61 0.40 0.52 0.35

13



epiDAMIK 2021, Aug 15, 2021, Virtual Quinlan Dawkins, Tianxi Li, and Haifeng Xu

−0.4

0.0

0.4

0.8

Biological Economic Informational Social Technological Transportation
Domain

Im
pr

ov
em

en
t method

Both

Importance

Isomorphism

Fig. 4. The timing improvement proportion by the pooled MC over the vanilla MC on 381 real-world networks.
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