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Figure 1: In the twenty-first century, the volatility in the GDP index seen on the globe appears to be linked to frequent disease
outbreaks. We use statistical modelling to try to find causal links between similar indicators in this study.

ABSTRACT
Epidemiologists aiming to model the dynamics of global events face
a significant challenge in identifying the factors linked with anom-
alies such as disease outbreaks. In this paper, we present a novel
method for identifying the most important development sectors
sensitive to disease outbreaks by using global development indica-
tors as markers. We use statistical methods to assess the causative
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linkages between these indicators and disease outbreaks, as well
as to find the most often ranked indicators. We used data imputa-
tion techniques in addition to statistical analysis to convert raw
real-world data sets into meaningful data for causal inference. The
application of various algorithms for the detection of causal link-
ages between the indicators is the subject of this research. Despite
the fact that disparities in governmental policies between countries
account for differences in causal linkages, several indicators emerge
as important determinants sensitive to disease outbreaks over the
world in the 21st Century.

CCS CONCEPTS
• Computing methodologies → Causal reasoning and diag-
nostics.
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1 INTRODUCTION
Researchers have been studying the consequences of important
events on global dynamics for centuries, with some focusing on
socio-economic shifts, others on healthcare concerns, and yet others
on cultural and historical factors. In the COVID-19 pandemic, the
relationship between socio-economic factors and illness outbreaks
has recently become a topic of great interest. Scientists around
the world are still baffled as to how these outbreaks affect the
planet or what elements influence them. These patterns are not
only unpredictable, but they also vary from place to country due
to differences in population, culture, geography, and other factors.
For disaster management and outbreak preparedness, investigative
analyses that lead to interpretable findings might be very beneficial.

We were inspired to perform this research after witnessing the
terrible impacts of the COVID-19 pandemic. We wanted to learn
more about the origins and effects of disease outbreaks around the
world. We chose to approach the problem statement as a challenge
in causal inference for this work, and we used statistical techniques
to handle the data and derive conclusions from the indicator dataset.
As a result, we use interpretable network diagrams to depict the
features that have strong causal linkages to the incidence of dis-
ease outbreaks. The directionality between the nodes may show
whether the outbreak was triggered by or impacted the prepared-
ness in that sector. This study was carried out individually for each
country after the missing data was imputed, and then the findings
were aggregated for the entire world, following which the most
commonly related nodes (indicators) were retrieved. These nodes
indicate universal indicators linked to disease outbreaks, which
authorities can analyze in depth in order to take necessary steps to
assist the development sectors they represent.

2 RELATEDWORK
The world development indicators have been very popular among
researchers trying to quantify or model the dynamics of global
systems. Using these indicators, scientists have been able to deter-
mine if growth and development spur improvement in governance
[1], links between population and resources [2], change in the
development outcomes associated with the activities initiated by
the MDGs [3] and between financial development and economic
growth [4]. Some papers note their shortcomings in obtaining ex-
tensive local data, but were able to find distinctive causal chains
between the features. Specifically in the field of healthcare, there
have been many attempts to find the effects of disease burden [5],
whether differences in microbial diversity can explain patterns of
age-adjusted AD rates between countries [6] and how spillovers
of zoonotic infectious diseases into the human population will be
impacted by global environmental stressors [7]. The recent COVID-
19 pandemic saw a rise in research work in this area, with many
papers attempting to correlate the effectiveness of policies with
the curve of the pandemic. From the dynamic causal modelling of

COVID-19 [8] to effects of non-pharmaceutical interventions [9],
causal inference has been gaining preference for providing inter-
pretable insights through scientific studies. Under the narrow field
of disease outbreaks, some researchers have suggested measures
for sustainable development [10], have forecasted economic trends
[11] or have studied the historical trends [12] and presented their
views on planning for better preparedness. We observed that al-
though these works are present at large, the task of analysing the
causal relationships between socio-economic factors and disease
outbreaks with our dataset has not been explored at a global scale
and we present the results of such global network analyses in this
work.

3 METHODOLOGY
3.1 Data Description and Creation
The dataset used in this study was created from the World Devel-
opment Indicators Data [13] provided by the World Bank and the
disease outbreak occurrence data by the World Health Organiza-
tion(WHO) [14], put together to create a novel dataset for deter-
mining the relationship between disease outbreak occurrence and
socio-economic factors. World Development Indicators (WDI) is an
expanding World Bank collection of development indicators from
which we extracted 141 development indicators for 204 countries
spanning over the years 2000 - 2019. Some examples of these indica-
tors include ARI treatment (% of children under 5 taken to a health
provider) and Unmet need for contraception (% of married women
ages 15-49). The disease outbreak data from WHO was extracted
separately for individual countries. The years that had an outbreak
occurrence/absence were labelled as 1/0 respectively.

3.2 Data Preprocessing and Statistical Tests
The basic preprocessing involved encoding categorical features like
country name, scaling the data and performing normalization. As
the average percentage of missing values per columnwas 24%, there
was a need for data imputation techniques for filling the missing
values. We employed a number of statistical data imputation tech-
niques (KNN imputation, MSREG and Random Imputation) out of
which MSREG provided the most relevant results for the analysis.
We determined the effectiveness of the imputation algorithms by
observing the statistical changes in the dataset before and after
imputation, including variance, covariance and correlations.

The Stochastic Multiple Regression Imputation (MSREG) [15]
method assigns values to each missing element ¤𝑥𝑖𝑟 according to (1),
where 𝑘 is the number of manifest variables used in a model, 𝑁𝑚 is
the number of missing values in 𝑥𝑖 , and 𝑆𝑟𝑎𝑛𝑑𝑛() is a function that
returns a different element of a standardized normally distributed
random column vector each time it is invoked.

¤𝑥𝑖𝑟 =

𝑘∑
𝑗=1

𝛽𝑥𝑖𝑥 𝑗
𝑥 𝑗𝑟 + (

√√√√
(1 −

𝑘∑
𝑗=1

𝛽𝑥𝑖𝑥 𝑗
Σ̂𝑥𝑖𝑥 𝑗

))Srandn() (1)

where 𝑗 = 1...𝑘,j ≠i, r = 1 ... N𝑚

Some features had non-Gaussian distributions before and after
imputation, thus changing them to exponential format transformed
the dataset to a normal distribution. The Shapiro Wilk test [16]
(2) along with the histogram visualization was used to test the
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Figure 2: Correlation heat map for indicators of St. Martin (French part). Few indicators are seen to be highly correlated with
each other, and the disease outbreak occurrence has very weak correlations with other indicators.

Table 1: Sample of Granger Causality Matrix for St. Martin (French part)

Feature Electricity
Access

National
Income

Central
Govt. Debt

Ext. Health
Expenditure GDP Inflation International

Tourism (Dept.)
Mortality
(Diabetes, etc)

Label
(Disease
Outbreaks)

Electricity
Access 1 0.9823 1 1 1 0 0.7308 1 1

National
Income 1 1 1 1 1 1 1 1 1

Central
Govt. Debt 1 1 1 1 1 1 1 0.0184 1

Ext. Health
Expenditure 0.9948 1 0.9935 1 0.9935 0.9999 0.993 0.0186 1

GDP 1 1 1 1 1 1 1 1 1
Inflation 0 1 1 0.9905 1 1 0.892 1 1
International
Tourism (Dept.) 0.0777 1 1 0.984 1 0.4913 1 0.0002 1

Mortality
(Diabetes, etc) 1 1 0.9981 0.7306 1 1 0 1 1

Label
(Disease
Outbreaks)

1 1 0 1 1 0.9995 1 0 1

normality. In this test, W statistic tests whether a random sam-
ple, 𝑥1, 𝑥2 . . . , 𝑥𝑛 comes from (specifically) a normal distribution.
Small values of W are evidence of departure from normality and
percentage points for the W statistic, obtained via Monte Carlo

simulations.

𝑊 =
(∑𝑛

𝑖=1 𝑎𝑖𝑥 (𝑖) )
2∑𝑛

𝑖=1 (𝑥𝑖 − 𝑥)2
(2)

where the 𝑥 (𝑖) are the ordered sample values and the 𝑎𝑖 are
constants generated from the means, variances and covariances
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Figure 3: Granger Causality Network for Bulgaria
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Figure 4: Granger Causality Network for St. Martin (French part)
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of the order statistics of a sample of size n from a normal distri-
bution. After performing the normality test, we tested if the data
was stationary or not, as the format of the dataset is time series.
For testing this, we used the augmented Dickey–Fuller test (ADF)
statistic [17, 18] (3) which tests the null hypothesis that a unit root
is present in a time series sample. Around 20 % of the features were
found to be non-stationary, which we made stationary by differenc-
ing the series twice and repeated the test again. The unit root test is
carried out under the null hypothesis 𝛾 = 0 against the alternative
hypothesis of 𝛾 < 0. Once a value for the test statistic (3) has been
obtained, it may be compared to the Dickey–Fuller test’s relevant
critical value.

𝐷𝐹𝜏 =
𝛾

𝑆𝐸 (𝛾) (3)

If the calculated test statistic is less (more negative) than the critical
value, then the null hypothesis of 𝛾 = 0 is rejected and no unit root
is present and thus the series is stationary.

3.3 Learning Causal Relationships Between
Indicators and Disease Outbreaks

(a) Granger Causality Test

Granger’s causality tests [19–21](4) the null hypothesis that
the coefficients of past values in the regression equation is
zero. This means the past values of time series (X) do not
cause the other series (Y). So, if the p-value obtained from
the test is lesser than the significance level of 0.05, then, we
will reject the null hypothesis.

P[𝑌 (𝑡 + 1) ∈ 𝐴|I(𝑡)] ≠ P[𝑌 (𝑡 + 1) ∈ |I−𝑋 (𝑡)] (4)

where P refers to probability, 𝐴 is an arbitrary non-empty
set, and I(𝑡) and I−𝑋 (𝑡) respectively denote the informa-
tion available as of time 𝑡 in the entire universe, and that in
the modified universe in which 𝑋 is excluded. If the above
hypothesis is accepted, we say that 𝑋 Granger-causes 𝑌 .

(b) IC* Algorithm

The IC* (Inductive Causation) algorithm [22, 23] can be used
to recover an underlying DAG structure from observed as-
sociations between traits. The algorithm is implemented as
follows:

(a) For each pair of variables a and b in 𝑉𝑂 search for a set
𝑆𝑎𝑏 such that the conditional independence between a
and b given 𝑆𝑎𝑏 (𝑎⊥𝑏 |𝑆𝑎𝑏 ) holds in 𝑝 (𝑉𝑂 ). We begin by
constructing an undirected graph linking the nodes a and
b if and only if 𝑆𝑎𝑏 is not found.

(b) For each pair of non-adjacent nodes a and b with a com-
mon adjacent node c, we check if c belongs to 𝑆𝑎𝑏 If it does,
then continue and if not then we substitute the undirected
edges by dashed arrows pointing at c.

(c) Then we recursively apply the following rules:
• R1: For each pair of non-adjacent nodes a and b with
a common neighbor c, if the link between a and c has
an arrow head into c and if the link between c and b
has no arrowhead into c, then add an arrow head on the

link between c and b pointing at b and mark that link
to obtain c –*-> b;

• R2: If a and b are adjacent and there is a directed path
(composed strictly of marked links) from a to b, then add
an arrowhead pointing toward b on the link between a
and b;

4 ANALYSIS
4.1 Exploratory Data Analysis
Before testing for causal relationships, we explored the data distri-
bution, trends and characteristics of the 141 development indicators.
To explore the data set, we calculated a correlation matrix using
Pearson’s correlation coefficient [24, 25] and plotted the correla-
tions in a heat map. A sample of this correlation heatmap for the
country St. Martin (French part) can be seen in Figure 2. Some fea-
tures were already heavily correlated and were removed to avoid
erroneous connections in the final results. As data is stationary
and fits normal distribution, it satisfies all the assumptions for the
causality tests and we can proceed with the causal analysis.

4.2 Granger Causal Analysis
The first step was using the Granger causality values to construct
a network showing predictive causal relationships between the
nodes. We are trying to view only the temporal relations through
this statistic, as one thing preceding another can be used as a proof
of causation. The Granger causality tests whether Y forecasts X,
which could be interesting to observe in our indicator trends. The
linkages were shown in the corresponding graphs. The total number
of causal relationships between the target variable- occurrence of
disease outbreaks and indicators was found to be 492 relationships.
Figures 3 and 4 show the Granger causality network graphs for
Bulgaria and St. Martin (French portion) using causality matrices
identical to the sample presented in Table 1.

4.3 Application of IC* Algorithm
By using this algorithm, we are essentially treating our problem
statement as causal discovery with hidden variables and trying
to remove irrelevant connections to maintain the potential causal
connections thus inferring causal DAGs. Along with the algorithm,
a Robust Regression Test [26, 27] was used to identify outliers and
minimize their impact on the coefficient estimates. It also simul-
taneously checks the independence of the two time series. After
applying this technique to each country separately, we observed
several causal structures and their corresponding embedded pat-
terns. The total number of causal relationships between the target
variable- occurrence of disease outbreaks and indicators was found
to be 234 relationships. In this graph, each variable is a node (green
coloured nodes), and each edge represents statistical dependence
between the nodes that cannot be eliminated by conditioning on
the variables specified for the search. If the edge also satisfies the
local criterion for genuine causation, then that network of directed
edges has been isolated in graph 2 of each figure, marked by pink
nodes. 11 such relationships of genuine causation were found in the
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Figure 5: IC* Algorithm Causality Network for Bulgaria

Table 2: Frequency ranked indicators related to target variable

Granger Causality IC* Algorithm
[Statistical Dependence]

IC* Algorithm
[Genuine Causation]

Indicator Freq. Indicator Freq. Indicator Freq.
Individuals using the
Internet (% of population) 30 Mortality rate attributed

to unsafe water 14 Out-of-pocket expenditure
(% of current health expenditure) 3

GDP, PPP (constant
2017 international $) 28 Central government debt,

total (% of GDP) 13 Suicide mortality rate
(per 100,000 population) 3

GDP per person employed
(constant 2017 PPP $) 24 People using safely managed

drinking water 11 Domestic general government
health expenditure 3

Inflation, consumer
prices (annual %) 24 Trade (% of GDP) 11 Domestic general government

health expenditure 1

GDP
(constant 2010 US$) 24 Individuals using the

Internet (% of population) 9 People using at least
basic sanitation service 1

dataset and are listed in Table 2. The IC* causality algorithm net-
work graphs for Bulgaria and St. Martin (French part) are presented
in figures 5 and 6.

5 RESULTS
After observing the graphs of 204 countries for 141 development
indicators, we can clearly see that every country has a distinctive
pattern of correlations and the total number causal relationships
between features between the target variable- occurrence of disease
outbreaks and indicators were found to be 492 relationships using
the Granger Causality, 234 using IC* statistical dependence and 11
using the IC* genuine causation algorithm respectively. Out of the
234 relationships determined by IC*, only 6 were confirmed using

both Granger and IC* algorithms which have been presented in
Table 3. We observed the graphs obtained by the algorithms closely
and noticed some interesting patterns. A certain subset of features
were continuously found to be related with the target variable, the
disease outbreak occurrence and have potential for genuine cau-
sation. By general observation, these features include indicators
like individuals using internet, GDP, employment and health ex-
penditure, which intuitively make sense as being factors affected
by major disease outbreaks. By ranking these features by frequency,
which can be observed in Table 2, the frequent features can be
given to the authorities as preliminary findings, or can be fed to
further network models to gain comprehensive insights. The main
motivation behind this study was increasing the interpretability
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Figure 6: IC* Algorithm Causality Network for St. Martin (French part)

Table 3: Common indicators related to target variable iden-
tified by both Granger Causality and IC* algorithms

Country Indicator

Iran, Islamic Rep. Hospital beds
(per 1,000 people)

Iran, Islamic Rep.
People using at least
basic drinking water services
(% of population)

Liberia Incidence of malaria
(per 1,000 population at risk)

Panama Trade (% of GDP)

South Sudan GDP per capita
(constant 2010 US$)

St. Martin
(French part)

Central government
debt, total (% of GDP)

and attempting to trace the common causal relationships occurring
in world dynamics over time which can be seen in the network
graphs and ranked features.

The findings provide easy-to-understand insights for the many
nations included in the worldwide statistics.We can observe global
patterns and country specific trends develop, and the direction of
the impact seen in the directed graphs, provides us with insight on
the nature of these connections, by aggregating the results gathered
from all 204 nations. GDP and Healthcare Expenditure are some
strong features that appear frequently in labelled outbreak sensitive
features and can be targeted by authorities to become more resilient
to the ravages of future outbreaks.

6 LIMITATIONS
One important observation is that the dataset in spite of containing
over 140 indicators, is still not sensitive to the minor events and
factors that influence modern countries. For example, the interac-
tions between the employment ratio and pandemic occurrence may
also be due to the ineffective policies or internal conflicts in the
country. While critiquing the employed methodology, we are aware
that Granger causality is not necessarily true causality but can be
indicative of the precedence of variables in the dataset. Directly
utilizing the results of this study without a background verification
for the given country may lead to incorrect assumptions about the
nature of dynamics and further lead to ethical concerns by policy
makers. Using the IC* algorithm to fine tune these results may
potentially provide a degree of certainty to our determined causal
relationships, but the verification of our results using more complex
causal algorithms may be necessary due to the complex nature of
the data and randomness in world indicators.

7 FUTURE SCOPE
This paper presents a new approach towards understanding how
disease outbreaks affect development of countries across the world.
In the future, we would like to extend this application, integrate
more statistical analyses and build a more thorough knowledge
framework based on the current dataset, combined with external
country specific data sources. We would also like to share our
insights with observations from domain experts studying the effects
of disease outbreaks and provide better explanations for why each
feature appears to have the respective causal relationship with the
other features in a connected network. The epidemiological findings
may be utilised to build strong emergency preparation systems and
plan and assess future development initiatives. We hope that this
study will aid researchers in better understanding disease outbreak
dynamics and their implications for global development.
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