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ABSTRACT
Owing to the ongoing COVID-19 pandemic and other recent global

epidemics, epidemic simulation frameworks are gaining rapid sig-

nificance. In this work, we present a workflow that will allow re-

searchers to simulate the spread of an infectious disease under differ-

ent intervention schemes. Our workflow is built using the Covasim
simulator for COVID-19 alongside a network-based PREEMPT tool
for vaccination. The Covasim simulator is a stochastic agent-based

simulator with the capacity to test the efficacy of different interven-

tion schemes. PREEMPT is a graph-theoretic approach that models

epidemic intervention on a network using submodular optimiza-

tion. By integrating the PREEMPT tool with the Covasim simulator,

users will be able to test network diffusion based interventions for

vaccination. The paper presents a description of this integrated

workflow alongside preliminary results of our empirical evaluation

for COVID-19.
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1 INTRODUCTION
Largely spurred by the ongoing COVID-19 pandemic, the past year

has seen a dramatic growth in the demand for effective epidemic

simulators (see Section 2 for a selective subset of related works).

Most of these simulators implement agent-based compartmental-

ized models for epidemic simulations and are effective at simulating
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disease progression over time. While many of these simulators also

support the ability to specify various intervention schemes (vaccina-

tions, social distancing, closures, etc.), these intervention schemes

are typically specified at the coarse level of the network—e.g., as

probability variables to encode contact probability or transmission

probability.

However, recent algorithmic developments in network science

have introduced an alternative way to specify intervention. For in-

stance, treating the disease spread on an epidemic (contact) network

as a diffusion process and vaccination as a node removal process,

one can study the impact of varying vaccination schemes at finer

granularities of the network, and based on the network characteris-

tics of the nodes to remove. Existing epidemic simulation platforms

lack the ability to plug-and-play such network-based intervention

mechanisms.

Contribution: In this paper, we present an integrated simula-

tion workflow to carry out epidemic simulations with network-

based interventions. In particular, we focus on vaccination schemes

for interventions. For simulator, our workflow uses the Covasim
agent-based simulator [11] for COVID-19. For vaccination-based

intervention, our workflow uses the PREEMPT method that uses

submodular optimization for identifying nodes to vaccinate on

a network [14]. For comparative purposes, we also implemented

simpler schemes such as random and degree-based seed selection.

The simulation workflow functions as follows, and is schemati-

cally illustrated in Figure 1. The simulations typically cover a span

of time of the disease spread (from days to months). During this

time, the simulator uses an in-built diffusion model to simulate the

spread of the disease over the population. Our workflow will allow

users to intervene at various stages of the simulation, by specifying

which subset of nodes (or individuals on the contact network) to

vaccinate at that stage. We refer to these regular intervention stages

as “vaccination rounds”. The simulator uses this intervention to

update the underlying contact network, and then proceeds with

the simulation. The simulator allows various network measure-

ments that vary temporally (e.g., number of infected nodes, number

of hospitalizations, number of deaths). These measurements are

tracked so that we can thoroughly study the efficacy of different

vaccination schemes.

In Section 2, we cover relevant works on epidemic simulators. In

Section 3 we present the algorithmic foundations for vaccination-

based intervention. In Section 4 we describe the key components

of our integrated workflow implemented for this effort, including
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Figure 1: Our integrated workflow for submodular epidemic intervention: The simulation is allowed to run unhindered for a month followed
by regular vaccination rounds of certain batch sizes every week. Nodes to vaccinate are specified by a seed selection strategy, which could
internally implement various strategies to identify those seeds.

the necessary background on the Covasim simulator and PREEMPT
tool. Section 5 presents the results of our experimental evaluation

and comparisons.

2 RELATEDWORKS ON EPIDEMIC
SIMULATORS

Some epidemic simulators like CovidSim [5] use a spatial model

that divides a specific geographical location into cells and simulates

the spread of the disease based on the evolving properties of each

cell. Compartmental models on the other hand like the classical

SIR model [10] or its more sophisticated counterparts like SEIR,

SEIRS, SIRS, SEI, SEIS, SI, and SIS [8] provide the option to model

the disease spread through ordinary differential equations or in

a stochastic manner. CovidSIM [16] is one such simulator which

models the spread of COVID-19 in a deterministic way using an ex-

tended SEIR model. A network based stochastic epidemic simulator

was introduced in [13] where a country is represented as a graph

with individual nodes representing an administrative unit of the

country, such as a city or region. SC-COSMO [12] and COVID-19

Simulator [4] fall under the category of simulators which support

the specification of interventions at a coarser level. A more fine

grained view is presented by agent-based simulators which have

been used to simulate outbreaks in the past. For instance, an agent-

based simulator like [6] that uses social interactions and individual

mobility patterns was used to study the H1N1 outbreak in Mexico.

More such agent-based stochastic simulators that were historically

used to simulate the spread of diseases like Measles have been

adapted to be used for COVID-19 like FRED [7].

3 INFLUENCE MAXIMIZATION-BASED
INTERVENTION

Influence maximization [9, 17] is a problem that has been well stud-

ied in social networks. We are given a graph 𝐺 (𝑉 , 𝐸) of 𝑛 nodes

and𝑚 edges, and a diffusion process that dictates how the infor-

mation is spread from node to node, the classical problem [9] is

one of identifying a set of 𝑘 nodes that is expected to maximize the

influence spread based the diffusion process.

Targeted immunization on the other hand, is the problem to iden-

tify nodes to vaccinate in a given network, such that the expected

disease spread is minimized. Under the Linear Threshold diffusion

model, these two problem have been shown to be equivalent in [3].

As a result, influence maximization based framework as an approx-

imate solution for designing intervention (specifically vaccination)

strategies is a feasible method for epidemic control.

The framework of networked epidemiology parts from the stan-

dard, but computationally more efficient, compartmental mass ac-

tion models [2] by providing a framework that can capture the

dynamics of an epidemic spreading over a population more pre-

cisely. In this framework, interactions among the individuals of

the population are modeled through a network𝐺 = (𝑉 , 𝐸,𝑤). Each
edge of the network 𝑒 = (𝑢, 𝑣) ∈ 𝐸 represent the interaction be-

tween individuals 𝑢, 𝑣 ∈ 𝑉 and the weight function𝑤 (𝑒) provides
the probability of transmitting the disease during that interaction.

Therefore, the networked epidemiology framework provides a plat-

form to design and test intervention policies at the individual level

by taking into account the role of individuals in the contact network

from both a functional and topological perspective. In this context,

the computational task of defining an optimal intervention strategy

can be formulated as the following optimization problem:

Definition 3.1 (EpiControl). Given a contact network𝐺 = (𝑉 , 𝐸,𝑤),
a diffusion model𝑀 over𝐺 , a set of initially infected vertices 𝐵 ⊆ 𝑉 ,

and a fixed budget 𝑘 , the EpiControl problem is to find an interven-

tion set 𝑆 ⊆ 𝑉 of size 𝑘 such that the expected number of infections

at the end of the diffusion process (𝜎 (𝐵, 𝑆)) is minimized.

Computing 𝜎 (𝐵, 𝑆) can be approximated by choosing a sampling

effort 𝑁 and averaging over these 𝑁 observations. More precisely,

we can obtain a set {𝐺1 . . . 𝐺𝑁 } of subgraphs of 𝐺 capturing 𝑁

realization of the diffusion process 𝑀 by edge deletion over 𝐺 :

each subgraph 𝐺𝑖 will retain only the edges that have enabled the

transmission of the disease during the simulation of the diffusion

process.
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For each of the subgraph 𝐺𝑖 , the number of infection at the end

of the diffusion process can be obtained by computing the function:

𝜎𝐺𝑖
(𝐵, 𝑆) =

�����⋃
𝑏∈𝐵

𝑅(𝑏, 𝑆)
����� (1)

where 𝑅(𝑏, 𝑆) ⊆ 𝑉 provides the set of vertices of reachable on

𝐺𝑖 from 𝑏 ∈ 𝐵 when 𝑆 is our intervention set. In the rest of our

presentation, we will make the assumption that the vertices in 𝑆 will

have perfect immunity from the disease. Therefore, the function

𝑅(𝑏, 𝑆) over the sample𝐺𝑖 can be computing by deleting the vertices

in 𝑆 from 𝐺𝑖 and the performing a breadth-first search from 𝑏.

The main objective of this work is to provide a framework that

can be used to experiment with various seed selection strategies

(identifying which nodes to vaccinate in an input contact network)

and evaluate their effectiveness in reducing the spread of an infec-

tious disease like COVID-19. For this purpose we use an agent-based

simulator that models the spread of COVID-19 called Covasim [11].
The setup itself is generic enough so that other simulators can be

used in its place.

4 EXPERIMENTAL FRAMEWORK
This section aims to describe the suggested framework by giving a

brief overview of the components, starting with the simulator used:

Covasim.

4.1 Covasim
Covasim [11] is a stochastic agent-based simulator that is used to

simulate the spread of the Covid-19 disease. The other functionality

of Covasim that is relevant to this work is the ability to define

and evaluate different intervention strategies, more specifically,

vaccines. The underlying model used by the simulator to generate

a synthetic population in the form of a network for a given geo-

graphical location is based on works like [15] to reflect age-specific

mixing patterns for a specific population. The network itself is a

multi-layered one with different layers (household, school, work,

community) describing how the agents (nodes) interact with each

other (edges). Every pair of adjacent nodes (𝑢, 𝑣) in the network

have one edge from 𝑢 to 𝑣 and another from 𝑣 to 𝑢. The weights

on the edges are the probability of the source node infecting the

destination node given that the source node itself is infected. The

probability value itself is modeled as a product of terms represent-

ing the infectiousness of the disease, the transmissibility of the

source, the susceptibility of the destination, and the frequency of

contact between the two.

One of the seed selection strategies that was incorporated into

the framework is the one given by [14] based on the near equiva-

lence of the EpiControl and Influence Maximization problem. This

strategy, henceforth referred to as PREEMPT, is described below.

4.2 PREEMPT
Minutoli et al. [14] propose PREEMPT an intervention strategy that

emerges from a new formulation of the EpiControl problem en-

abling to transfer some of the algorithmic techniques that have

been developed for the maximization of submodular function under

cardinality constraints. They note that the objective function of the

EpiControl problem can be reformulated in terms of the number of

individuals spared from the disease through the intervention. More

precisely, they define the function to compute the number of lives
saved from the disease as:

𝜆𝐺𝑖
(𝐵, 𝑆) = 𝜎𝐺𝑖

(𝐵, ∅) − 𝜎𝐺𝑖
(𝐵, 𝑆). (2)

Intuitively, Eq. (2) defines the difference in the number of infec-

tion between taking no action and deploying the intervention 𝑆 .

Minutoli et al. [14] also show the following theorem.

Theorem 4.1. Given a graph𝐺𝑖 = (𝑉 , 𝐸), a set of initially infected
individuals 𝐵 ⊆ 𝑉 , and an intervention set 𝑆 , the function 𝜆𝐺𝑖

of
Eq. (2) is a submodular function of 𝑆 if 𝐺𝑖 is a rooted tree.

Therefore, Minutoli et al. [14] reformulated the EpiControl prob-

lem as a maximization problem as follows:

Definition 4.2. Given a contact network𝐺 = (𝑉 , 𝐸,𝑤), a diffusion
model 𝑀 over 𝐺 , a set of initially infected vertices 𝐵 ⊆ 𝑉 , and a

fixed budget 𝑘 , the EpiControl problem is to find an intervention

set 𝑆 ⊆ 𝑉 of size 𝑘 such that the expected number of lives saved at

the end of the diffusion process (𝜆(𝐵, 𝑆)) is maximized.

The result of Theorem 4.1 and the formulation of the EpiControl

problem suggest that the approximation algorithms that have been

developed for the Influence Maximization[9, 17] problem can be

adapted to solve the EpiControl problem when the samples 𝐺𝑖 are

rooted trees. The result of Theorem 4.1 does not hold for the general

case, but it includes the SIR model[10] and the class of diseases that

evolve over trees (e.g., sexually transmitted diseases[1]). However,

Minutoli et al. [14] note that when the structure of the samples 𝐺𝑖

is expected to be sparse and with few cycles the approximation

algorithms for Influence Maximization lose their approximation

guarantee, but they can serve as good heuristics.

5 EXPERIMENTAL EVALUATION
5.1 Experimental Setup
The following experimental setup was used to test our integrated

workflow presented in Section 4 (and illustrated in Figure 1).

• The duration of each run of the simulation is 170 days (over

5 months) – starting on January 1st and ending on June 19th.

• The simulation is allowed to run for the first 30 days un-

hindered. The first round of vaccination is on the 31st day.

Subsequent vaccination rounds occur once every week. We

define a batch size of a specific round to be the number of

vaccines given at that round.

• The contact network is extracted from the simulation frame-

work and fed as input to the seed selection module to identify

nodes to vaccinate.

• The different types of vaccination strategies are:

– Random: The 𝑘 nodes to be vaccinated at a given inter-

vention round are chosen at random.

– Degree: The next batch of top-𝑘 high degree nodes are

chosen to be vaccinated at each round.

– PREEMPT: The top𝑘 nodes identified by PREEMPT [14] based
on the current state of the network, are vaccinated at a

given round.
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5.2 Experimental Results
Given the above setup we conduct three kinds of studies

1
to under-

stand how different vaccination strategies (in terms of the number

and type of vaccines given out) behave and use the no-vaccination

strategy as the baseline for comparison. The statistics of the input

contact network are as follows:

• Simulated location: India

• |𝑉 | = 100, 000

• |𝐸 | = 3, 793, 826

• Degree distribution is shown in Figure 2.

Figure 2:Degree Distribution of the Contact Network: Since every ad-
jacent node pairs have 2 edges between them, the figure below takes
into account just the in-degree (which is same as the out-degree).

The metrics we considered to evaluate different vaccination

strategies are:

• the number of cumulative infections (i.e., since first day of

simulation);

• The number of new infections per day; and
• The number of cumulative deaths.

In what follows, we use the term “seeds” to mean the nodes

chosen for vaccination at any round.

5.2.1 Effect of seed selection strategies. First, we evaluate the im-

pact of the seed selection strategy on the cumulative infections

over a 5+ month period. For this, we vaccinate nodes prescribed by

three strategies mentioned in Section 5.1, namely, Random, Degree,

and PREEMPT. For each instance of the experiment, a fraction of the

population is vaccinated based on these strategies at a single round,
on January 31st. The effects on the disease spread are observed in

terms of cumulative infections over the course of the simulations.

The results are shown in Figure 3.

Figure 3 shows that vaccination strategies matter. More specifi-

cally, compared to the baseline of no-vaccination, all three strategies

show reductions in the number of cumulative infections. However,

the figure also helps show the varying efficacies among the different

1
An important thing to note while looking at the experimental results: The disease

spread being simulated happens in a setting where the agents involved are unaware of

the disease and there is no effect on their behavior (social distancing, reduced mobility

etc.). This is why the relative performance of different strategies should be looked at

rather than the inflated and unrealistic raw numbers.

Figure 3: Effects of the seed selection strategy on disease spread: The
x-axis represents the % of population vaccinated at a single round,
on the 31st day of the simulation. The y-axis represents the cumu-
lative #infections after 5+ months of simulation as a % of the popu-
lation infected.

vaccination schemes. In particular, PREEMPT significantly outper-

forms both random and degree-based seed selection strategies. For

instance, when 20% of the population is vaccinated, PREEMPT re-

sults in a 61% decrease in the cumulative infections relative to the

no-vaccine strategy; whereas the reductions achieved by the Ran-

dom and Degree strategies are modest. In fact, the Degree based

strategy shows only a marginal advantage over Random. For this

reason, henceforth, we will simply show results using Degree for

comparison against PREEMPT.
In the above experiments, only a single round of vaccination was

used, whichmay be unrealistic in practice. In what follows, we study

the impact of temporally spacing out the vaccine delivery across

multiple rounds. There are two configurations here to experiment—

a) uniform, where each round gets the same (fixed) number of

vaccines (Section 5.2.2); and b) non-uniform, where the batch sizes

can differ round to round (Section 5.2.3).

5.2.2 Effect of vaccinating in batches of uniform size. We conducted

a set of experiments setting a vaccination target of 20% of the pop-

ulation over the simulation duration of ∼5 months. This is meant

to reflect roughly the general pace at which various vaccination

schemes are progressing in the COVID-19 pandemic. Over the

100,000 population, this translates to 20,000 vaccines in total. These

vaccines are distributed across multiple rounds, and we use a uni-
form batch size for these rounds.

Figure 4 shows the results of our experiments. Part (a) tracks the

evolution of the number of cumulative infections; part (b) tracks the

number of new infections per day; and part (c) tracks the number

of cumulative deaths. We compare both the Degree and PREEMPT
strategies, for two settings—i) using a single round with a batch size

of 20,000; and ii) using 20 rounds with a batch size of 1,000. The key

observations from Figure 4 are as follows. First, we observe that

the single round strategy (“20000_1”) significantly outperforms the

multiple round strategy (“1000_20”). This is to be expected; how-

ever, it is also not realistic to assume high vaccine capacity at the

start of an epidemic. Second, we observe that PREEMPT consistently
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(a) (b) (c)

Figure 4: Effects of temporally spacing out vaccination rounds on disease spread using a uniform batch size: For every curve labeled as ‘X_Y_Z’,
‘X’ stands for the seed selection strategy; ‘Y’ stands for the (uniform) batch size used at each round; and ‘Z’ stands for the number of rounds.
Every vertical dashed line represents a vaccination round. Also shown for comparative reference, is the ‘No vaccine’ curve that corresponds
to zero vaccines given out at each round. We use 20,000 as the total number of vaccines.

(a) (b) (c)

Figure 5: Effects of varying the batch sizes as the disease spreads: The plots are labeled as ‘X_Y’ where ‘X’ stands for the seed selection strategy
and ‘Y’ represents the two batching strategies—uniform or non-uniform. The uniform strategy applies the same number of vaccines per round
(1,000 vaccines per round). The non-uniform strategy uses varying batch sizes. For these experiments, we used: 2,000 vaccines in each of the
first 5 rounds; 1,000 vaccines in each of the next 5 rounds; and 500 vaccines per round in the final 10 rounds. Also shown is the ‘No vaccine’
curve for reference.

outperforms the corresponding Degree strategy under both set-

tings (single and multiple rounds). In fact PREEMPT’s performance

with the multiple round setting (“1000_20”) is comparable to the

single round setting of Degree (“20000_1”), in terms of both new

infections per day and the number of cumulative deaths. These

results collectively demonstrate the value of choosing seeds based

on submodular optimization.

5.2.3 Effect of vaccinating in batches of non-uniform sizes. Next,
we conducted a similar set of experiments where the batch sizes

across vaccination rounds are non-uniform. There are two ways in

which this strategy can be formulated—either as a “top-heavy” or a

“bottom-heavy”—based on which end of the time spectrum we use

a larger batch size (top implies earlier batches, and bottom implies

later batches). In both cases, we keep the total percentage of the

population getting vaccinated the same. In this paper, we report

results from the top-heavy strategy that reflects the real-world

effort of aggressive vaccination at earlier stages of the pandemic.

For this experiment, we used 2,000 vaccines in each of the first 5

rounds; 1,000 vaccines in each of the next 5 rounds; and 500 vaccines

per round in the final 10 rounds.

The results can be seen in Figure 5. Like before, part (a) tracks the

evolution of the number of cumulative infections; part (b) tracks the

number of new infections per day; and part (c) tracks the number

of cumulative deaths. The key observations from Figure 5 are as

follows. The trends are similar across the three metrics, namely

the number of cumulative infections, the number of new infections

per day, and the number of cumulative deaths. Next, we observe

that irrespective of batch size, PREEMPT remains the better strategy

when it comes to seed selection in a batched setting, than the De-

gree variant. Finally, we also notice that when PREEMPT is used in

non-uniform batch top heavy mode (“PREEMPT_non-uniform”), it

becomes significantly better in reducing the number of infections

5



and deaths compared to even PREEMPT in uniform mode (“PRE-

EMPT_uniform”). This demonstrates the value of carefully choosing

an appropriate subset of seeds early on in an epidemic.

6 CONCLUSION
In this work, we provide a framework that integrates epidemic sim-

ulation with graph-theoretic/network science-based interventions.

Using this framework, users can select different subsets of seeds

(nodes on the network) to vaccinate and observe their efficacies

over the duration of the simulation time. Even though our paper

uses a specific epidemic simulator to test, our framework itself is

generic and can be integrated with other similar simulators.

The experiments conducted in this paper help demonstrate a

set of key findings. First, it shows the value of using an influence

maximization based approach toward seed selection in the context

of epidemic control. In particular, we demonstrate that PREEMPT as

a seed selection strategy is able to outperform other heuristics like

degree or random schemes. In addition to a carefully selected subset

of seeds, our experiments also demonstrate that the timing of these

vaccination matter—i.e., giving more vaccines early on could save

more lives in the long run. While a much broader set of experiments

are necessary to establish the generality of these observations, these

preliminary results point in a promising direction toward the value

of network-driven models for epidemic studies.
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