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Identifying key nodes is crucial for accelerating or impeding dynamic spread-
ing in a network. Community-aware centrality measures tackle this prob-
lem by exploiting the community structure of a network. Although there
is a growing trend to design new community-aware centrality measures,
there is no systematic investigation of the proposed measures’ effective-
ness. This study performs an extensive comparative evaluation of promi-
nent community-aware centrality measures using the Susceptible-Infected-
Recovered (SIR) model on real-world online social networks. Overall, results
show that K-shell with Community and Community-based Centrality mea-
sures are the most accurate in identifying influential nodes under a single
spreader problem. Additionally, the epidemic transmission rate doesn’t sig-
nificantly affect the behavior of the community-aware centrality measures.
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1 INTRODUCTION
With the plethora of data flowing into online social networks, rep-
resenting the main entities and their interactions is essential. Net-
works offer an ideal representation of such complex systems to in-
vestigate their structure and dynamics. Identifying influential nodes
is crucial for many applications such as designing lucrative mar-
keting campaigns, targeting terrorist attacks, controlling epidemic
spreading, and detecting financial risks [Lü et al. 2016]. Centrality is
one of the main approaches employed to do so. Classically, centrality
measures exploit the topology and dynamics of networks [Lü et al.
2016]. They can be classified into two main groups, namely local
and global. The former uses the node’s neighborhood, while the
latter incorporates all of the network’s information to quantify a
node’s influence. They can also be combined [Sciarra et al. 2018].

Many real-world networks contain densely connected zones that
are loosely linked to each other. This so-called community structure
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is a ubiquitous feature in natural and artificial systems [Girvan
and Newman 2002]. The network’s structure and dynamics are
significantly affected by communities [Nematzadeh et al. 2014].
Recently developed centrality measures exploit this information
to identify influential nodes [Ghalmane et al. 2019; Guimera and
Amaral 2005; Gupta et al. 2016; Luo et al. 2016; Magelinski et al. 2021;
Tulu et al. 2018; Zhao et al. 2015]. We refer to them as "community-
aware" centrality measures. Unlike classical centrality measures,
community-aware centrality measures differentiate between the
node’s intra-community links (links between nodes in the same
community) and inter-community links (links between nodes in
different communities). Intra-community links exert influence at the
community level, while inter-community links exert influence at the
network level. The difference between community-aware measures
is mainly based on how intra-community links and inter-community
links are associated together. For example, Comm centrality [Gupta
et al. 2016] preferentially selects bridges over hubs by prioritizing
inter-community links over intra-community links. Community-
based Mediator [Tulu et al. 2018] favors nodes with unbalanced
intra-community and inter-community links.
With limited resources, it is essential to identify top influential

nodes either for maximizing or for minimizing the diffusion in
online social networks. The Susceptible-Infected-Recovered (SIR)
model [Anderson and May 1979] is commonly used to model disease
and rumor spreading. Starting with a small set of initial spreaders
defined by a specific centrality measure, the goal is to evaluate its
ability to reach the maximum outbreak size.

The SIR model has been widely used to investigate the behavior of
various classical centrality measures [Bucur 2020; Kitsak et al. 2010;
Liu et al. 2015]. Studies on community-aware centrality measures
examine either a small number of the proposed solutions in the
literature or experiments are performed on a small sample of net-
works [Gupta et al. 2016; Luo et al. 2016; Magelinski et al. 2021; Tulu
et al. 2018; Zhao et al. 2015]. Therefore, there is no consensus about
the effectiveness of the most popular measures on online social
networks, where communities are naturally prevalent [Gaisbauer
et al. 2021; Labatut et al. 2014; Traud et al. 2011]. This paper aims to
fill this gap. An extensive investigation of seven community-aware
centrality measures is performed on ten real-world online social
networks using the SIR diffusion model.

The paper is organized as follows. Section 2 introduces the community-
aware centrality measures. Section 3 presents the networks, the
tools, and the methodology applied. Experimental results are pro-
vided in section 4. The main findings are discussed in section 5.
Finally, in section 6, the conclusion is given.

2 COMMUNITY-AWARE CENTRALITY MEASURES
In this section, we briefly recall the definitions of the seven community-
aware centrality measures under test. Let 𝐺 (𝑉 , 𝐸) be an undirected
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and unweighted graph where 𝑉 is the set of nodes, 𝐸 is the set of
edges, and𝑁 = |𝑉 | is the size of the network. It is partitioned into𝑁𝑐

non-overlapping communities where 𝑐𝑘 is 𝑘-th community. A node
𝑖 possess 𝑘𝑖𝑛𝑡𝑟𝑎

𝑖
intra-community links and 𝑘𝑖𝑛𝑡𝑒𝑟

𝑖
inter-community

links such that 𝑘𝑡𝑜𝑡
𝑖

= 𝑘𝑖𝑛𝑡𝑟𝑎
𝑖

+ 𝑘𝑖𝑛𝑡𝑒𝑟
𝑖

represents its degree. Note
that if the community structure is unknown, a community detection
algorithm is needed to uncover it.
1. Community Hub-Bridge [Ghalmane et al. 2019] weights

the intra-community links of a node by their community size. The
inter-community links are weighted by the number of communities
reached by the node through its inter-community links. It is defined
as follows:

𝛼𝐶𝐻𝐵 (𝑖) = |𝑐𝑘 | × 𝑘𝑖𝑛𝑡𝑟𝑎𝑖 + 𝑁𝑁𝐶𝑖 × 𝑘𝑖𝑛𝑡𝑒𝑟𝑖 (1)
where |𝑐𝑘 | is the size of the community of node 𝑖 and 𝑁𝑁𝐶𝑖 is

the number of communities linked to the node 𝑖 .
2. Participation Coefficient [Guimera and Amaral 2005] gives

more importance on the heterogeneity of the inter-community links
of a node. If the node’s links are uniformly distributed across the
communities, its centrality value is one. It is defined as follows:

𝛼𝑃𝐶 (𝑖) = 1 −
𝑁𝑐∑
𝑐=1

(
𝑘𝑖,𝑐

𝑘𝑡𝑜𝑡
𝑖

)2
(2)

where 𝑘𝑖,𝑐 is the number of links node 𝑖 has in a given community
𝑐 .

3. Community-based Mediator [Tulu et al. 2018] uses entropy
to quantify the node’s importance through its intra-community and
inter-community links. It is defined as follows:

𝛼𝐶𝐵𝑀 (𝑖) = 𝐻𝑖 ×
𝑘𝑡𝑜𝑡
𝑖∑𝑁

𝑖=1 𝑘
𝑡𝑜𝑡
𝑖

(3)

where𝐻𝑖=[−
∑
𝜌𝑖𝑛𝑡𝑟𝑎
𝑖

𝑙𝑜𝑔(𝜌𝑖𝑛𝑡𝑟𝑎
𝑖

)]+[−∑
𝜌𝑖𝑛𝑡𝑒𝑟
𝑖

𝑙𝑜𝑔(𝜌𝑖𝑛𝑡𝑒𝑟
𝑖

)] is the
entropy of node 𝑖 based on its 𝜌𝑖𝑛𝑡𝑟𝑎 and 𝜌𝑖𝑛𝑡𝑒𝑟 which represent
the node’s ratio of intra-community and inter-community links and∑𝑁
𝑖=1 𝑘

𝑡𝑜𝑡
𝑖

is the total degrees in the network.
4. CommCentrality [Gupta et al. 2016]weights the intra-community

links and inter-community links by the ratio of external links. It
also prioritizes bridges over hubs. It is defined as follows:

𝛼𝐶𝑜𝑚𝑚 (𝑖) = (1 + 𝜇𝑐𝑘 ) × 𝜒 + (1 − 𝜇𝑐𝑘 ) × 𝜑2 (4)

where 𝜇𝑐𝑘 is the proportion of inter-community links over the

total community links in community 𝑐𝑘 , 𝜒 =
𝑘𝑖𝑛𝑡𝑟𝑎
𝑖

𝑚𝑎𝑥 ( 𝑗∈𝑐 )𝑘
𝑖𝑛𝑡𝑟𝑎
𝑗

× 𝑅,

𝜑 =
𝑘𝑖𝑛𝑡𝑒𝑟
𝑖

𝑚𝑎𝑥 ( 𝑗∈𝑐 )𝑘
𝑖𝑛𝑡𝑒𝑟
𝑗

×𝑅, and 𝑅 is a constant to scale intra-community

and inter-community values to the same range.
5. Modularity Vitality [Magelinski et al. 2021] is based on the

modularity variation due to the node removal from the network.
Removal of a bridge node increases the modularity, while removal
of internal a hub decreases the modularity. It is defined as follows:

𝛼𝑀𝑉 (𝑖) = 𝑀 (𝐺𝑖 ) −𝑀 (𝐺) (5)

where 𝑀 is the modularity of a network and 𝑀 (𝐺𝑖 ) is the net-
work’s modularity after the removal of node 𝑖 . Note that Modularity
Vitality is a signed centrality. In this study, we use its absolute value
to rank the nodes.

6. Community-based Centrality [Zhao et al. 2015] is based on
weighting the node’s intra-community and inter-community links
by the size of their communities. It is defined as follows:

𝛼𝐶𝐵𝐶 (𝑖) =
𝑁𝑐∑
𝑐=1

𝑘𝑖,𝑐

(𝑛𝑐
𝑁

)
(6)

where 𝑛𝑐 is the number of nodes in community 𝑐 and 𝑘𝑖,𝑐 is the
number of links node 𝑖 has in a given community 𝑐 .

7. K-shell with Community [Luo et al. 2016] is based on the 𝑘-
shell (also called 𝑘-core) hierarchical decomposition of the network
composed of intra-community links and the network composed
of inter-community links, separately. A weighting parameter then
combines the two values to prioritize the selection of hubs or bridges.
It is defined as follows:

𝛼𝑘𝑠 (𝑖) = 𝛿 × 𝛼𝑖𝑛𝑡𝑟𝑎 (𝑖) + (1 − 𝛿) × 𝛼𝑖𝑛𝑡𝑒𝑟 (𝑖) (7)

where 𝛼𝑖𝑛𝑡𝑟𝑎 (𝑖) and 𝛼𝑖𝑛𝑡𝑒𝑟 (𝑖) stand for the 𝑘-shell value of node
𝑖 by only considering intra-community links and inter-community
links, respectively. 𝛿 is set to 0.5 in this study.

3 DATA, TOOLS, AND METHODS

3.1 Data
This study uses ten unweighted and undirected online social net-
works publicly available. They originate from various online plat-
forms (Facebook, Twitter, Deezer, Hamsterster, and Pretty Good
Privacy). Table 1 reports their basic topological characteristics. As
their community structure is unknown, it is uncovered by Infomap
[Rosvall and Bergstrom 2008].

1. Facebook Friends [Peixoto 2020]: Nodes are users from a
Facebook ego network extracted in April 2014. Edges between two
users mean they are "friends" on Facebook.

2. Retweets Copenhagen [Rossi and Ahmed 2015]: Nodes are
Twitter users tweeting while the United Nations conference in
Copenhagen about climate change was taking place. Edges rep-
resent retweets.

3. Caltech [Rossi and Ahmed 2015]: Nodes are users on Facebook
enrolled at Caltech University. Edges between two users mean they
are "friends" on Facebook.

4. Ego Facebook [Rossi and Ahmed 2015]: Nodes are users on
Facebook participating in a survey conducted on Facebook. Edges
between two users mean they are "friends" on Facebook.

5. Hamsterster [Kunegis 2014]: Nodes represent users from an
online social pet network hamsterster.com. Edges represent friend-
ships between the users.

6. Facebook Organizations [Peixoto 2020]: Nodes are users on
Facebook who work in the same company. Edges between two users
mean they are "friends" on Facebook.

7. Facebook Politician Pages [Rossi and Ahmed 2015]: Nodes
are Facebook pages of politicians from different countries. Edges
represent mutual likes of Facebook users among the given pages.

8. Princeton [Rossi and Ahmed 2015]: Nodes are users on Face-
book enrolled at Princeton University. Edges between two users
mean they are "friends" on Facebook.
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Table 1. Topological features of the networks. 𝑁 is the number of nodes. |E|
is the number of edges. < 𝑘 > is the average degree. 𝜁 is the transitivity. 𝜇
is the mixing parameter. 𝜆𝑡ℎ is the epidemic threshold. * means the largest
connected component of the network is taken if it is disconnected.

Network 𝑁 |𝐸 | < 𝑘 > 𝜁 𝜇 𝜆𝑡ℎ

Faceb. Frien.* 329 1,954 11.88 0.512 0.112 0.048
Retweets Co. 761 1,029 2.70 0.060 0.287 0.139
Caltech* 762 16,651 43.70 0.291 0.410 0.048
Ego Faceb. 4,039 88,234 43.69 0.519 0.077 0.009
Hamsterster* 1,788 12,476 13.49 0.090 0.298 0.022
Faceb. Org. 5,524 94,219 34.11 0.222 0.366 0.016
Faceb. Pol. 5,908 41,729 14.12 0.301 0.111 0.024
Princeton* 6,575 293,307 89.21 0.163 0.365 0.006
PGP 10,680 24,316 4.55 0.378 0.172 0.056
DeezerEU 28,281 92,752 6.55 0.095 0.429 0.066

9. PGP [Kunegis 2014]: Nodes are users from the web of trust,
utilizing Pretty Good Privacy (PGP) encryption for sharing infor-
mation online. Edges between users represent sharing data under
secure connections.
10. DeezerEU [Rozemberczki and Sarkar 2020]: Nodes represent

users from Deezer, a European platform for music streaming. Edges
represent online friendships between users.

3.2 Susceptible-Infected-Removed Model
The Susceptible-Infected-Removed (SIR) model is one of the widely
used diffusion models in networks. Initially, a set of nodes (𝑓𝑜 ) is
in the infectious state (I) while the remaining nodes are in the sus-
ceptible state (S). At each iteration, an infectious node infects its
susceptible neighbors at a rate 𝜆. Previously infected nodes recover
and are removed from the network at a rate 𝛾 . The spreading con-
tinues until there are no infectious nodes. At this point, the number
of nodes in the "Recovered" state indicates the spreading power of
the initial set of nodes (𝑓𝑜 ). Each network has an epidemic threshold
(𝜆𝑡ℎ) controlling the epidemic spreading. It is defined as [Wang et al.
2016]:

𝜆𝑡ℎ =
< 𝑘 >

< 𝑘2 > − < 𝑘 >
(8)

where < 𝑘 > and < 𝑘2 > are the first and second moments of the
network’s degree distribution. The epidemic threshold values are
reported in table 1.

3.3 Imprecision function
The imprecision function [Kitsak et al. 2010] measures the perfor-
mance of a centrality measure in predicting influential spreaders.
It is based on the average number of infections due to an infected
seed node. It is defined as follows:

𝜖𝑐 (𝑝) = 1 − 𝑀𝑐 (𝑝)
𝑀𝑒 𝑓 𝑓 (𝑝)

(9)

where 𝑝 is a value between [0,1],𝑀𝑐 (𝑝) is the average spreading
power of top 𝑝𝑁 nodes ranked according to a specific centrality
measure 𝑐 , and𝑀𝑒 𝑓 𝑓 (𝑝) is the average spreading power of top 𝑝𝑁

nodes ranked according to their influence in the SIR model (𝑁 is
the number of nodes). The smaller the value of 𝜖𝑐 (𝑝), the better the
performance of the centrality measure 𝑐 .

3.4 Methods
The SIR model runs on each network using different transmission
rates around the epidemic threshold (𝜆𝑡ℎ2 , 𝜆𝑡ℎ1.5 , 1.5 × 𝜆𝑡ℎ , 2 × 𝜆𝑡ℎ).
The recovery rate 𝛾 is set to 1 to measure the spreading ability of the
seed node initiating the spreading only. For each transmission rate,
1000 independent simulations of the SIR model are performed in net-
works with less than 6000 nodes and 100 independent simulations
otherwise. The SIR spread size of each node in the network is com-
puted after setting it as the seed of diffusion. The set ordered from
highest to smallest SIR spread size is called the reference set. The
community-aware centrality measures are computed, and nodes are
ranked from higher to lower centrality value. For each transmission
rate (𝜆), we calculate the imprecision function over the top fraction
𝑝𝑁 nodes.

4 EXPERIMENTAL RESULTS

4.1 Performance of the community-aware centrality
measures within networks

Figure 1 illustrates the performance of the community-aware cen-
trality measures for the ten networks under study. The transmission
rate is set equal to the epidemic threshold (𝜆𝑡ℎ) for each network.
Each figure reports the evolution of the seven community-aware
centrality measure’s imprecision function when the top spreading
nodes’ size ranges from 𝑝=0.02 to 𝑝=0.2 of the network size. Re-
member that the lower the value of the imprecision function, the
more effective the centrality measure. One can observe that the
performance generally increases with the proportion of top spread-
ing nodes. Furthermore, no community-aware centrality measure
outperforms the others in all the situations. Overall, there is a high
variability of community-aware centrality measures performances
within and across networks. For example, In Ego Facebook, at 𝑝=0.02,
the imprecision value of K-shell with Community is 0.38, followed
by Modularity Vitality at 0.6. Then all others have an imprecision
value between 0.9 and 1. The variability among the community-
aware centralities persists till 𝑝=0.2. K-shell with Community now
has a value of 0.05, indicating its high accuracy at higher 𝑝 . In
the same vein comes Community-based Centrality, which has an
imprecision value of 0.1. Its accuracy improves by almost 90% com-
pared to its value at 𝑝=0.02. Modularity Vitality follows with an
imprecision value of 0.25, improving in almost half value of 𝜖 (𝑝).
Community-based Mediator improves from 0.92 (𝑝=0.02) to a value
of 0.61 (𝑝=0.20). Community Hub-Bridge also improves, but in a
lower proportion. Finally, Participation Coefficient and Comm Cen-
trality show a negligible improvement. There is also a high vari-
ability for the same community-aware centrality measures across
networks. For example, in Facebook Politician Pages, the impreci-
sion value of Community-based Mediator at 𝑝=0.02 is 0.81, while in
Caltech, it amounts to 0.25. Another example is Community-based
Centrality in Ego Facebook amounting to 0.9 at 𝑝=0.02 while it
amounts to 0.11 in PGP.
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Fig. 1. The imprecision function 𝜖 (𝑝) for the 7 community-aware centrality measures on each network. The transmission rate is set to 𝜆𝑡ℎ and the recovery
rate is set to 1. 𝜇 is the mixing parameter, the ratio of inter-community over total community links in a network.

Fig. 2. The average of the imprecision function 𝜖 (𝑝) over the 10 online social networks. The transmission rate is set to 𝜆𝑡ℎ and the recovery rate is set to 1.

4.2 Performance of the community-aware centrality
measures across networks

Each community-aware centrality measure’s imprecision function
is averaged over the ten networks for all 𝑝 values. The goal is to
better understand the performance consistency. Figure 2 illustrates

these results. The most stable (low variability) community-aware
centrality measure is Modularity Vitality. Despite the change in
𝑝 , the imprecision function values remain stable and condensed.
Then comes K-shell with Community and Community-based Cen-
trality. Even though they show high variability when 𝑝 ≤ 0.08,
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Fig. 3. The average of the imprecision function 𝜖 (𝑝) over the 10 online social networks as a function of five different transmission rates (𝜆𝑡ℎ2 , 𝜆𝑡ℎ
1.5 , 𝜆𝑡ℎ ,

1.5 × 𝜆𝑡ℎ , 2 × 𝜆𝑡ℎ). The recovery rate is set to 1. The upper, middle, and bottom figures show the results at 𝑝=0.02, 𝑝=0.10, and 𝑝=0.20, respectively.

both are very consistent afterward. On the opposite, the remaining
community-aware centrality measures show higher variability as
𝑝 increases. The average imprecision function 𝜖 (𝑝) illustrates the
high accuracy of K-shell with Community and Community-based
Centrality for all 𝑝 values. It ranges from 0.5 for the lowest 𝑝 value
to 0.1 at the highest 𝑝 value. Then comes Modularity Vitality, with
𝜖 (𝑝) = 0.55 at 𝑝=0.02 and 𝜖 (𝑝) = 0.40 at 𝑝=0.20. Community-based
Mediator has similar 𝜖 (𝑝) values as Modularity Vitality, yet it has
high variability. Community Hub-Bridge shows 𝜖 (𝑝) between 0.75
and 0.5 at 𝑝=0.02 and 𝑝=0.20, respectively. Participation Coefficient
and Comm Centrality perform poorly. Their minimum for 𝜖 (𝑝) is
around 0.6, and their maximum is around 0.8. These results confirm
the results of figure 1.

4.3 Influence of the transmission rate
In this experiment, we study the effect of varying the transmission
rate (𝜆) in the SIR model around the epidemic threshold (𝜆𝑡ℎ). Fig-
ure 3 shows the average imprecision function 𝜖 (𝑝) of the seven
community-aware centrality measures at five different transmission
rates. The average imprecision function 𝜖 (𝑝) is calculated consider-
ing a low portion of top nodes (𝑝=0.02), a medium portion of top
nodes (𝑝=0.10), and a high portion of top nodes (𝑝=0.20).
At low 𝑝 values (𝑝=0.02), results are generally comparable. For

example, the mean of 𝜖 (𝑝) for Comm Centrality at the five differ-
ent transmission rates is in the vicinity of 0.8. Also, the boxplots’
interquartile range is quite similar, indicating that the values are
consistent across 𝜆. Participation Coefficient, Community-based
centrality, K-shell with Community, and Modularity Vitality also

show consistent results. In contrast, Community Hub-Bridge is
the most sensitive to the variation of the transmission rate. When
𝜆 =

𝜆𝑡ℎ
2 , Community Hub-Bridge cannot differentiate the nodes.

Indeed, the mean 𝜖 (𝑝) is 0.98, and the interquartile range’s height is
very narrow. When the transmission rate is set to 𝜆𝑡ℎ

1.5 , 𝜆𝑡ℎ , 1.5×𝜆𝑡ℎ ,
and 2× 𝜆𝑡ℎ , 𝜖 (𝑝) becomes quite comparable. The consistency of the
mean and the interquartile range of 𝜖 (𝑝) persists at 𝑝=0.10 and at
𝑝=0.20. Indeed, they share approximately the same values of 𝜖 (𝑝)
for all community-aware centrality measures except for Community
Hub-Bridge. Although now its interquartile range is wider compared
to that of 𝑝=0.02 when 𝜆 =

𝜆𝑡ℎ
2 , the mean and interquartile range

are much different than the others.

5 DISCUSSION
This study aims to investigate the behavior of popular community-
aware centrality measures in online social networks. Community-
aware centrality measures quantify a node’s importance based on
its local influence (inside its community using intra-community
links) and its global impact (outside of its community using inter-
community links). Yet, each community-aware centrality measure
processes these two types of links distinctively.

A comparative evaluation of seven community-aware centrality
measures is performed using the SIR diffusion model. The impreci-
sion function quantifies the centrality measure’s accuracy by com-
paring the spreading power of top nodes according to a centrality
measure compared to their ground truth spreading efficiency. Re-
sults indicate that K-shell with Community and Community-based
Mediator outperform the alternative community-aware centrality
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measures. K-shell with Community exploits the hierarchical struc-
ture of the networks while taking into consideration its community
structure. This result corroborates the study reported in [Kitsak et al.
2010]. Indeed, the authors show that under a single spreader setting,
nodes identified using 𝑘-shell are the most accurate in predicting
spreading outbreaks in networks. The performance of Community-
based Centrality is also on the same line as the findings of the
authors who proposed this measure [Zhao et al. 2015]. This study
shows that this community-aware centrality measure is accurate
in online social networks with communities of different sizes. The
performance of these two measures can be attributed to their func-
tioning in a single-spreader problem. K-shell with Community can
pinpoint the nodes that are found in the core of the local and global
network. The most efficient single-spreaders are then found by com-
bining the node’s coreness in these two networks, representing the
influence of a node inside and outside its community. Note that in
the case of a multiple-spreader problem, the distance between the
nodes will then be the most discriminating feature in determining
the spread of the epidemic [Kitsak et al. 2010]. This abates the power
of 𝑘-shell and will also be the case with K-shell with Community
since many nodes will exist on the same core level. For Community-
based Centrality, by considering both the size of the communities
that a node links to and its connections to these communities, the
influential nodes are better identified. Indeed, this approach will
prioritize nodes that are well connected to other communities, but
the overall power is directly proportional to the communities’ sizes.

Results also show that Community-based Mediator is somewhat
sensitive to the community structure strength. Indeed, as shown
in figure 1, when the network has a strong community structure
(𝜇 ≤ 0.172), it performs poorly. Yet, as the network has a weaker
community structure, it becomes as accurate as K-shell with Com-
munity and Community-based Centrality. This centrality exploits
the heterogeneity of links to assess the node’s importance. Indeed,
in a weak community structure, a node possesses a higher number
of inter-community links than intra-community links. It explains
why it performs better in a weak community structure. Modularity
Vitality is the most consistent across networks, regardless of the
strength of the community structure. The low accuracy of Partici-
pation Coefficient, Comm Centrality, and Community Hub-Bridge
may be linked to the fact that they give a lot of importance to bridges.
Besides bridges, online social networks also include hubs inside their
communities that play a major role in information dissemination.

6 CONCLUSION
Identifying influential nodes in online social networks is funda-
mental for maximizing information diffusion and inhibiting fake
news spreading. The community structure of a network plays a
crucial role in the dynamics of these spreading processes. This work
investigates the effectiveness of prominent community-aware cen-
trality measures to target influential nodes under the SIR diffusion
process context. Results show that K-shell with Community and
Community-based Centrality are the most accurate community-
aware centrality measures. Additionally, performances are pretty
insensitive to variation of the transmission rate. Therefore, this work
gives clear indications about which community-aware centrality

measure to use. Nevertheless, practitioners need to be conscious
that the community aware-centrality measures accuracy depends
on the seed node size. As in numerous situations, the community
structure is unknown. Future work will investigate the results con-
sistency using alternative community detection algorithms. Another
direction of research is to study the influence of the propagation
process. Finally, we are planning to link the performances to the
network topological properties.
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