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ABSTRACT
Epidemiologic studies of infectious disease often involve capturing

and modeling complex data of how people interact to contribute to

transmission. Network models answer questions about the course

of an epidemic within a population of interest, providing a realistic

reproduction of the connections between contacts. The simulation

of an epidemic over time provides estimates of infection, and by

performing simulations with varying ranges of parameter values,

parameters that contain uncertainty due to bias or lack of data can

be calibrated. Latin hypercube sampling randomly draws parameter

values in a way that distributes samples evenly over the space.

Approximate Bayesian computation converges to subregions of

the parameter space. We explore parameter calibration in network

models using these two search strategies with a network model of

HIV transmission.
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1 INTRODUCTION
In this ongoing project, we investigate calibration of stochastic,

agent-based network models of disease spread, specifically in the

context of modeling the spread of HIV over sexual networks. The

computational burden of this type of model restricts the feasibility

of traditional methods of calibration using other deterministic or

stochastic models. We compare a standard method to search a multi-

dimensional parameter space, Latin hypercube sampling (LHS) [1,

2], with approximate Bayesian computation (ABC), a method that

is commonly used to find a single set of calibrated parameter values

[5, 10]. We will compare their performance calibrating a model of

the HIV epidemic among men who have sex with men (MSM) in

San Diego, California [8].
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Network models of disease transmission simulate spread over a

network of contacts that evolves over time. This framework has two

advantages in modeling sexual transmission: contacts can persist

across time points, and it is straightforward to incorporate highly

heterogeneous risk behaviors, demographics, treatment use, etc.

The drawback of allowing significant heterogeneity is the necessity

of estimating inputs for a very large number of parameters.

Even when estimation of inputs is achievable, the possibility of

bias in those estimates is substantial. Self-reported data are prone to

bias, especially when dealing with stigmatized diseases and sensi-

tive behaviors, as is the case with HIV. Moreover, there are typically

strong selection effects, as we are modeling hard-to-reach popula-

tions and are unlikely to have representative samples from those

populations [6, 7].

Model parameters are usually informed by experimental or ob-

servational data, analogous systems, statistical inference, expert

opinion [11], biological constraints, variation in repeated measure-

ments, or comparable data in scientific literature. When this infor-

mation is lacking or not available, a range of reasonable values or a

best guess can be chosen as initial inputs for a model [9].

Calibration of parameters is critical to obtain a model that bet-

ter reflects reality and thus can produce reliable predictions and

inferences about disease spread. This need is especially acute when

unknown or uncertain parameters are influential to transmission

and drive spread.

If input parameters control independent processes, they can be

calibrated independently, and full exploration of themulti-dimensional

parameter space is unnecessary. In network-based models, how-

ever, this is unlikely to be the case, and parameters have complex,

nonlinear relationships with each other and model outputs. Hence,

calibration must simultaneous for all parameters. This is a computa-

tionally intensive task, with the number of permutations to consider

rapidly increasing for even a moderate number of parameters [1, 9].

Simulation-based calibration methods can be used to estimate

likely values of outputs from complex, stochastic agent-based mod-

els. These methods use parameter-search strategies to find the joint

distribution of model outputs and input parameters algorithmically,

either by approximating the likelihood or by choosing combinations

of parameters that produce desired network or epidemic metrics in

simulated epidemics [3].

2 METHODS
We will apply two search algorithms to calibration of a large sto-

chastic network-based model of HIV transmission among MSM in

San Diego. In this section, we first present the two methods, Latin

hypercube sampling and approximate Bayesian computation algo-

rithms, then describe the parameterization of the epidemic model,

and finally give the specifics of the simulation study.
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2.1 Search Strategies
2.1.1 Latin Hypercube Sampling. One standard parameter-search

strategy is Latin hypercube sampling (LHS). It provides a near-

random sample of parameter values from a multidimensional dis-

tribution. This is accomplished by subdividing the parameter space

into equally sized partitions and randomly sampling from each

partition.

Parameters are not likely to be independent of each other, and

their relationship with epidemic outcomes may be nonlinear. So,

for multi-parameter searches, parameters must be sampled jointly.

In addition, other search strategies may converge on a region of the

parameter space that misses maxima in multimodal distributions.

LHS handles both these issues by generating dependent samples

in which each sample is random but does not occupy the same

region of the parameter space, distributing samples more evenly

over the space. This is an improvement over pure random sam-

pling, which may produce samples that cluster in some areas of

the parameter space (wasting computational resources), or highly

dispersed samples in some regions (potentially missing features of

the distribution) [1].

LHS is a stratified, Monte Carlo, sampling-based method. It pro-

ceeds by dividing the range of the 𝑛-dimensional parameter space

into equally-probable intervals for each of 𝑛 parameters being con-

sidered. The size of each interval is determined by the probability

distribution chosen for each parameter space, and the use of uni-

form distributions results in intervals of equal size [9]. The number

of intervals, i.e., the resolution of the grid of intervals, is determined

by how many samples are desired. A parameter value is randomly

drawn from each interval such that only one sample point occu-

pies each row and column (for two-dimensional space), or each

axis-aligned hyperplane (for an arbitrary number of dimensions).

Samples are drawn sequentially, with new sample points taking

into account the position of the previous sample points. The set of

parameter values from a Latin hypercube sample is then used as

input parameters and run in model simulation, and model outputs

are obtained and assessed against target outputs.

2.1.2 Approximate Bayesian Computation. Approximate Bayesian

computation (ABC) is another sampling-based method for calibrat-

ing parameters. It uses a rejection algorithm to sample parameter

values from prior distributions of reasonable values. This approxi-

mates posterior distributions of the parameters by simulating from

the model. Model outputs from the simulations under various com-

binations of parameters are compared with observed data, and the

values of parameters that produce adequately-fit simulations are

kept.

Like LHS, ABC methods can be used to estimate model param-

eters jointly to reveal dependencies between them. ABC assesses

different models that are parameterized from empirical data as well

as knowledge of how likely certain values of inputs might be [10].

Simulation results are compared to data through summary statis-

tics in order to reduce the dimensionality of the complex results

of the model, and only parameter values resulting in simulations

within a given tolerance threshold are retained. ABC converges to

subregions of the parameter space instead of randomly sampling

the entire space [2], so it can be much more efficient in its search.

Parameter Base Value Parameter Space

Daily act rate 0.096(M), 0.136(C) [0.5,1.5] multiplier

Initial prevalence 0.20 [0.10,0.30]

Mean testing interval (days) 198(B), 259(H), 234(O) [0.5,1.5] multiplier

Days since last negative test 198(B), 259(H), 234(O) [0.5,1.5] multiplier

Table 1: Parameters to estimate in themodel calibration pro-
cess. The initial model uses multipliers of 1 and an initial
prevalence of 0.20.Where needed, rates are given by partner-
ship type (main, casual) and by race (Black,Hispanic, Other).

This method is likelihood-free, so it can perform estimationwhen

models are too complex to use standard likelihood techniques, as is

the case here. This is achieved through approximating the likelihood

functions by running simulations many times [9]. ABC methods

not only give point estimates of parameter values but uncertainty

measures, since the full posterior distribution is approximated. This

uncertainty can then be propagated into the calibrated model’s

predictions [10].

ABC rejection sampling first samples plausible parameter val-

ues from prior distributions. A dataset is then simulated under

the model using the sampled parameters as inputs. Target sum-

mary statistics that quantify defining aspects of the observed data

are compared to summary statistics calculated from the simulated

model. The parameter values are accepted if the summary measures

match those of the data closely enough, within a distance smaller

than a set threshold. This is repeated for many sets of parameters

and their simulations. The accepted parameter values approximate

the posterior distribution given observed data [4, 5].

2.2 Parameters
In theHIVmodel we are using for this study, there are over 150 input

parameters. These parameters cover aspects of demographics (e.g.,

race, age), relationships (e.g., number of partnerships a person has,

whether casual or long term, how often acts of sexual intercourse

occur), and HIV transmission and progression (e.g., how often an

individual is tested or treated for HIV, how long a person spends

in different stages of the disease, viral load at each stage). Certain

input parameters are well-supported by data, like age and race, or

are well-characterized in the literature, like viral load. A number of

parameters, however, have a potentially large impact on epidemic

dynamics, but are difficult to pinpoint precisely.

For this investigation, we chose four parameters to calibrate: the

initial prevalence of HIV in the population, the rate of how often

sexual intercourse acts occurs, the average interval between HIV

tests, and the average time since a person’s last negative HIV test.

The time since last negative test is uncertain but is not expected to

strongly impact epidemic trajectory, and it is included as a check.

The estimated value of this should not depend significantly on the

values of other parameters. These chosen parameters are of interest

since they contain bias and uncertainty, and most importantly, they

are expected to greatly influence HIV prevalence over time (expect

for time since last negative test).

The range of plausible values for each parameter of interest is

given in Table 1. The simulated outputs from the epidemic model

that will be used for evaluation are the final average prevalence of
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HIV and the trend in prevalence, both calculated over the last 10

years of the simulation. We target 20% prevalence and a trend of 0

(stable prevalence) over this time period.

2.3 Simulation
Epidemic simulations for both LHS and ABC are run for 70 years

in one-week time steps. The first 60 years are discarded as burn-in,

and the average prevalence and slope of prevalence over the last

10 years are computed to evaluate model acceptability.

For the Latin hypercube sampling algorithm, input values for

multipliers on act rate, testing interval, and last negative test were

drawn sequentially from ranges of 0.5 to 1.5 and initial prevalence

from a range of 0.10 to 0.30. A sample size of 1000 (𝑛 = 1000) was

drawn for these four parameters (𝑘 = 4), so the joint parameter

space is in a 4-dimensional space of real numbers (R4). Figure 1
shows a visualization of the 1000 samples of the three parameters

that are expected to influence model outputs in the joint space. The

sampled parameters are input into the simulation along with the

other model parameters, and the average prevalence and trend are

computed as above. Results within 1 percentage point from the

target prevalence of 20% and within 0.00005 from the target trend

of 0 are considered acceptable and the corresponding parameter

combinations are retained.

Figure 1: 1000 Latin hypercube samples with 3 parameters:
act rate multiplier, testing interval multiplier, and initial
prevalence. The parameter space for the multiplier on the
last negative test interval is not shown.

For the alternative sampling method, approximate Bayesian com-

putation, we first set marginal prior distributions for all four param-

eters of interest. We chose non-informative priors using uniform

distributions from the minimum to maximum of the ranges of plau-

sible values given in Table 1. The algorithm first draws from the

marginal priors, those values are input to a simulation, and the

average prevalence and trend are computed. If these are not within

10% of the targets of 0.20 and 0 (respectively), then the set of pa-

rameters is rejected. Parameters thereafter are sampled in a biased

fashion from an area of the parameter space where simulations are

frequently close to the targets. This process is repeated for narrower

tolerances, drawing from the posterior distribution of the previous

stage. The process of drawing parameters, simulating the epidemic,

and rejecting simulations outside of the threshold is repeated until

100 accepted simulations are obtained, approximating the joint pos-

terior distribution of model parameters. A relatively large threshold

is used initially to find the target region, and the threshold becomes

gradually reduced in the sequential stages of the procedure. This

results in comparable thresholds to those used in LHS parameter

selection.

3 RESULTS & DISCUSSION
3.1 LHS
The resulting accepted parameter combinations from the 1000 LHS

samples are given in Table 2. These combinations produce a sim-

ulated epidemic over 70 years in which the last 10 years have an

average prevalence of 19%-21%, and the slope of the prevalence is

-0.0005 to 0.00005 % per year. These are relatively broad targets,

since available data leaves much unknown about the true epidemic

trajectory, thoughmore specific or additional targets may be chosen

to produce a smaller set of acceptable parameter values.

The act rate multiplier is consistently estimated to be near 0.70-

0.74, below the base value multiplier of 1. The estimated initial

prevalence is consistently high (26% to 30%) compared to the base

value of 20%. One parameter combination shows the reverse pattern

of these estimates, where act rate is high (0.78) and initial prevalence

is low (20%), as seen in row 3 of Table 2. The estimated multiplier

on testing interval does not show much of a pattern, with either

a substantial increase (multiplier >1) or decrease (multiplier <1)

from the base value to achieve acceptable epidemic trajectories. As

expected, the estimated values for multiplier on last negative test

interval range across almost the entire parameter space and show

no clear patterns.

Figure 2 shows the accepted marginal values for each parameter

relative to the prevalence and trend produced by all simulations.

Accepted values are highlighted in blue. The point estimates for

the multiplier on act rate are very consistent, implying that act rate

is very important in simulating prevalence, and that it is a major

driver of epidemic transmission. Initial prevalence is also relatively

consistent, and its value drives the epidemic’s trajectory, though

to less of an extent than act rate. These two parameters show a

dependent relationship, where combinations with higher act rate

tend to be paired with lower initial prevalence (and the reverse).

The other parameters, however, are spread relatively evenly across

the space within the region of the target outcomes, indicating that

their value is jointly-dependent on the others and not a major driver

of epidemic trajectory.

The prevalence curves of the epidemics produced by the 1000

LHS samples are plotted in Figure 3. The simulated epidemic trajec-

tories with parameter combinations that produce acceptable target

outcomes are highlighted in green. It is of note that that there are

clearly unacceptable parameter combinations that produce preva-

lence curves very different than what is observed in the data. The

LHS sampling algorithm is illuminating in that, when parameters
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Act Rate

Multiplier

Initial

Prevalence

Testing Interval

Multiplier

Last Negative Test

Interval Multiplier

Prevalence Trend

0.721 0.296 0.790 0.697 0.202 0.00005

0.702 0.272 1.072 1.222 0.196 0.00003

0.784 0.200 0.580 1.252 0.198 0.00004

0.710 0.283 1.106 0.653 0.190 0.00005

0.733 0.276 0.800 0.594 0.199 0.00004

0.735 0.259 0.887 1.349 0.204 0.00004

0.700 0.299 1.243 1.073 0.193 0.00004

0.714 0.298 0.985 0.551 0.206 0.00004

Table 2: Accepted parameter combinations from LHS simulations that produce epidemic simulation outputs within 1 percent-
age point of prevalence target (20%) and 0.00005 of trend target (0).

Figure 2: 3-D plots of simulation output values of preva-
lence and trend given LHS parameter combinations of act
rate multiplier, initial prevalence, testing interval multi-
plier, and last negative test interval multiplier. Plots show
marginal values of each parameter (y-axis) versus corre-
sponding prevalence (z-axis) and trend (x-axis) outputs. Blue
points are marginal parameter values that produced target
model outputs within the specified thresholds.

are unknown, there are multiple acceptable combinations of pa-

rameters that lead to model calibration. This is in contrast to one

ideal combination (and its approximate distribution), chosen by

approximate Bayesian computation.

3.2 ABC
Simulation using approximate Bayesian computation are in pro-

cess. This algorithm produces posterior distributions of parameter

values. Marginal distributions should center on values of the param-

eters that produce acceptable epidemic trajectories. Thus, different

statistics (e.g., minimum, mean, median) of the posterior distribu-

tions may be used for model inputs. We will evaluate whether ABC

misses global or local maxima that are captured by LHS.

Figure 3: 1000 Simulated epidemics over 70 years using LHS
samples of parameter values. Gray lines are simulated preva-
lence over time that did not meet target prevalence and
trend thresholds. Green lines show accepted simulations.
The red line is the initial simulation using base parameter
values. The gray panel highlights the last 10 years, used for
computing targets.

4 CONCLUSION
In summary, epidemic network models are powerful, detailed mod-

els that capture dynamic and heterogeneous individual behaviors

which contribute to disease spread. Since these models aim to reflect

the reality of a specific disease’s transmission, model parameters

with uncertainty, variability, or bias need to be calibrated make

meaningful inference from a model. Parameter estimation with

Latin hypercube sampling is more dispersed and better covers the

entire parameter space, while approximate Bayesian inference cre-

ates a focused distribution of values and is more computationally

efficient.
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